
REPORT

Cloud Native
Application
Security
Embracing Developer-First
Security for the Cloud Era

Guy Podjarny

Compliments of

See why
2.6 million developers
choose Snyk to secure
their cloud native
applications

Chaim Mazal,
Head of Information Security

 Snyk’s cloud native
application security
platform allows us to
achieve developer
productivity and large
scale security

FIND OUT HOW

https://snyk.io/product/cloud-native-application-security/?utm_source=oreilly

Guy Podjarny

Cloud Native
Application Security

Embracing Developer-First Security
for the Cloud Era

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10560-0

[LSI]

Cloud Native Application Security
by Guy Podjarny

Copyright © 2021 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Mary Preap
Development Editor: Virginia Wilson
Production Editor: Katherine Tozer
Copyeditor: nSight, Inc.

Proofreader: Audrey Doyle
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

June 2021: First Edition

Revision History for the First Edition
2021-05-18: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cloud Native
Application Security, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and Snyk. See our statement of
editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. v

1. Digital Transformation. 1
Becoming a Technology Company 1
Accelerating Technology Delivery 2
Security and Cloud Native Development 5
Conclusion 6

2. Dev-First Security. 7
What Is Dev-First Security? 8
Shift Left Is Not Enough 14
DevSecOps Versus Dev-First Security 15
Conclusion 17

3. Securing the Entire Cloud Native App. 19
From IT Security to Cloud Security 19
From Cloud Security to Cloud Native Application Security 21
Container Application Security 22
IaC Application Security 27
Conclusion 31

4. Adapting to Dev-First CNAS . 33
Rethinking the Security Org Structure 33
Rethinking Tooling 38
Rethinking Priorities 43
Conclusion 45

Summary. 47

iii

Preface

Cloud native applications don’t just run on a different platform; they
overhaul the scope of the applications, the methodologies with
which they’re built, and the skills and ownership around them. To
stay relevant, security practices need to undergo a transformation of
a similar magnitude. We have to embrace a developer-first (dev-
first), Cloud Native Application Security approach and anchor our
practices to this new organizational reality.

This book will help you understand the market transition to cloud
native apps and the organizational changes it includes. Armed with
this context, it describes the required changes for our security prac‐
tices and tooling and why they matter. Last, it provides concrete
examples for some of these changes, meant to both help you under‐
stand the concepts better and act as candidates for the first steps you
may take on the journey.

By the end of this book, you should understand why and how to
embrace a Cloud Native Application Security approach.

Why I Wrote This Book
I’m a technophile and I believe technology can help us solve many
of the world’s problems and tap into the opportunities they present.
I’m therefore truly excited by how much better and easier software
development has become, making it easier for creativity to thrive
and bring innovative and high-impact changes to our daily lives.

I’m also truly worried about our ability to keep safe in a digital
world. After more than 20 years in the security industry, I know all
too well how fragile applications are and how easy it is to ignore

v

risks when building software. The drive to improve our lives and
businesses with technology cannot—and should not—be stopped,
but without building security in, we may hurt ourselves even more.

I believe the only solution is to build security into the fabric of soft‐
ware development; no other approach can keep up. This is a big
change, requiring a true transformation of our security practices,
technologies, and attitude. It goes against the natural evolution of
cyberspace and, thus, requires a revolution, not evolution.

This is the reason I founded Snyk, a company dedicated to building
security into development, and it’s the reason I’m writing this book.
The first step in transforming security is to catch up to the one that
took place in development: the adoption of DevOps and cloud, and
the resulting cloud native model.

My hope is that this book will help readers understand what it
means to embrace Cloud Native Application Security, why it mat‐
ters, and how to get started. If more people take on such a change,
adapted to their needs, we’ll be a step closer to a safer digital world.

Who Is This Book For?
At its core, this book is for anyone seeking to adapt security to the
cloud era. This includes organizations big and small and practition‐
ers from many parts of the organization, including development,
operations, security, and executive leadership. The book is written to
be accessible to all those readers, even if they have only light famili‐
arity with how software is developed and operated.

More specifically, the book is aimed at leaders and senior individuals
in security and development organizations because those two
groups are the primary ones responsible for building secure applica‐
tions, but who most need to adapt to the new reality.

When I use the term you, I’m referring to any technology leader in
the company who shares responsibility for building secure applica‐
tions. When I use the term we, I’m referring to the surrounding
development, security, and operations (DevSecOps) community as a
whole.

vi | Preface

CHAPTER 1

Digital Transformation

Technology is reshaping practically every industry vertical, and
businesses need to adapt or they will be left behind. This tidal wave
affects all businesses, requiring them to perform a digital transfor‐
mation to face the new times.

Digital transformation typically includes two main parts:

• Becoming a technology company if you’re not one already
• Accelerating delivery of technology solutions, notably via

DevOps and the cloud

The term cloud native is used to describe organizations, applications,
and development processes designed for this new reality and its new
platforms.

Let’s dive deeper into what each of these bullets means.

Becoming a Technology Company
For certain industries, digital transformation requires changing how
they transact with customers, turning physical goods into digital
ones. Banks and shops are moving from physical branches to online
portals and ecommerce, passengers hail taxis through mobile apps
instead of hand waving or calling a taxi station, and media is
increasingly produced through crowdsourcing and consumed over
the internet instead of via cable TV.

1

Such massive changes also require rethinking how to secure the org
(organization) and adjust priorities. As more customer data and
business transactions shift online, digital disruptions or breaches
become more costly, and therefore the importance of cybersecurity
grows. To address the change, security budgets must allow for a big‐
ger spend on cybersecurity, security teams need more cyber-related
skills, and even the chief security officer (CSO) may be required to
master different skills or be placed elsewhere in the org.

Every business aspires to become “a technology company that does
X,” which in turn means adopting a technology-focused security
program.

Accelerating Technology Delivery
The second focus of digital transformation is speed. Although
responding faster to market needs has always been a powerful edge
in business, the pace has never been quicker. Thanks to technology
and process innovations, businesses have gone from annual releases
to shipping multiple times a day. Users have grown to expect such
constant updates, and businesses that fail to adapt will struggle
financially.

This speed is made possible by two primary forces: the cloud and
DevOps. Each term represents a family of technologies and practi‐
ces, respectively, and has a significant impact on security. Let’s take a
moment to define them.

The Cloud
The cloud represents a series of technological developments that
turned hardware into APIs, letting developers access and control
physical resources purely with software. The shift to software intro‐
duces dramatic ease and flexibility and is best exemplified by elastic
compute, pioneered by the Amazon Web Services (AWS) Elastic
Compute Cloud (EC2) service. EC2 allows users to rent a virtual
machine (VM) by the hour and spin it up or down with a simple
API call. This allows a service to adapt its capacity dynamically,
using little compute when demand is low, incurring low costs, while
automatically scaling up to handle surges in demand and avoid los‐
ing business.

2 | Chapter 1: Digital Transformation

1 Containers are lightweight packaging of operating system and files, offering a type of
virtual machine but smaller and lighter, allowing better agility and speed. IaC solutions
are tools that define infrastructure in code or declarative files, often stored in repos as
part of the app, and can automatically apply those definitions on an infra platform.

Elastic compute and the broader family of cloud technologies com‐
bine to give developers full control over rich infrastructure controls.
These include additional APIs to control other infrastructure com‐
ponents, such as storage and network access; developer-oriented
replacements to IT tooling, such as containers and Infrastructure-
as-Code (IaC) solutions;1 and new technology paradigms that build
on this elasticity, such as serverless.

The cloud unlocked the opportunity for any company to provide
operational excellence previously reserved to a select few and do so
with dramatically lower costs. However, for a company to tap into
the power of the cloud, it also has to change its IT processes, which
is where DevOps comes in.

DevOps
DevOps changed the way software is built and maintained. It is pre‐
dicated on independent development teams, who are able to own
the application end to end. The most immediate manifestation of
that is having developers also operate the application, dubbed “you
build it, you run it,” hence the name DevOps. However, the term has
grown to encompass a broader autonomy for development teams,
including empowerment to make more business decisions, choose
the underlying technologies they use, and more.

This autonomy powers speed, notably in the form of continuous
delivery (CD). Instead of shipping updates in large, infrequent
batches, CD means shipping small improvements regularly, often
multiple times a day. Each incremental step is verified with automa‐
ted tests to avoid delays, and observability tools to flag problems in
production as soon as they happen.

Such constant updates allow the business to adapt to customer
needs faster, which improves its commercial performance. This con‐
tinuous flow of faster delivery leading to faster market adaptation is
most commonly portrayed as an infinity loop, as shown in
Figure 1-1, replacing older waterfall, left-to-right models.

Accelerating Technology Delivery | 3

Figure 1-1. A continuous DevOps practice

Cloud Native
Organizations that started building technology in this DevOps and
cloud surrounding are often referred to as cloud native companies.
Their developers embrace on-call responsibilities, monitoring dash‐
boards regularly and being paged if the service goes down, whereas
their ops teams focus on building platforms that make it easier to
build operable software.

Such software engineering organizations are often called cloud
native development teams because they are designed—across peo‐
ple, process, and technology—to leverage the cloud to the max. The
term has grown to also encompass organizations that modernize
their practices and adopt such cloud native practices, on both public
and private cloud platforms.

Similarly, applications built using cloud native development are
referred to as cloud native apps. This isn’t just a historical honorific,
but rather, a description of how these applications are maintained. It
implies that these apps are constantly updated, can scale to large vol‐
umes, and leverage infrastructure automation to provide a better
customer experience.

Organizationally, it’s important to understand that cloud native
applications have a bigger scope than their predecessors had. Older
applications are made up mostly of code and open source libraries
and rely on a central IT team to provide them with infrastructure,
such as hardware, VMs, network access, databases, and more.

4 | Chapter 1: Digital Transformation

2 Dockerfile is the most common way to define what a container should hold. These are
human editable files, typically managed as source code. Running a build command on
a Docker image creates a container image.

Cloud native apps, by contrast, include such underlying infrastruc‐
ture as part of their scope. Hardware and VMs are replaced by con‐
tainers and managed through Dockerfiles stored in the source code’s
repository;2 network configuration is specified in IaC files such as
Terraform and Kubernetes configurations; and databases or similar
supporting apps are provided as services in the cloud platform itself,
and managed by the application team itself.

This change in the scope of the application is shown in Figure 1-2,
using a somewhat arbitrary before-and-after view of pre-cloud and
cloud native apps.

Figure 1-2. Cloud native applications include a much broader scope

Security and Cloud Native Development
The security industry, unfortunately, hasn’t kept up with this market
shift. In the vast majority of organizations, security teams still cling
to their past methodologies. They continue to employ minimally
changed practices, despite dramatic changes to those they help
protect.

Security and Cloud Native Development | 5

Despite DevOps preaching end-to-end ownership by independent
teams, security is typically owned by a separate team. At best, this
split causes bottlenecks as application teams wait for a central team
to assess an app or review findings. At worst, it leads to serious secu‐
rity flaws being overlooked because development teams lack tools
and knowledge in security, and security teams lack knowledge of the
app.

Infrastructure security continues to rely on the same IT-oriented
practices, ignoring the fact that these layers became part of the
broader cloud native application scope and are managed by devel‐
opers. These practices again cause delays and security oversights,
with neither development teams nor IT teams being set up to
address the risk properly.

These approaches are doomed to failure because they go against the
change the business strives to achieve.

Conclusion
Digital transformation is aptly named; it transforms organizations,
changing their business trajectory to be technology focused, with
the tools and practices required to succeed. This change is far reach‐
ing, affecting anything from org structures and business incentives
to development methodologies and technology stacks.

Cloud native applications are designed to thrive in this new reality.
They rely on independent teams, able to deliver customer value end
to end. They use DevOps methodologies and cloud technologies to
empower these teams to succeed. Unfortunately, security functions
haven’t kept up with this change and are continuing to operate
largely the same as before, making them ineffective and a burden on
the business.

To secure cloud native applications successfully, security practices
need to undergo a transformation that matches the one that devel‐
opment took on. We have to embrace a dev-first, Cloud Native
Application Security approach and anchor our practices to this new
organizational reality.

In the next two chapters, we’ll dive deeper into what dev-first secu‐
rity and Cloud Native Application Security mean, and how you can
successfully implement them in your organization.

6 | Chapter 1: Digital Transformation

CHAPTER 2

Dev-First Security

As mentioned, the security industry hasn’t been a part of the
DevOps journey. As shown in Figure 2-1, security processes tend to
gate the continuous process instead of merging into it. Notably,
security processes are incapable of the following:

Empowering independent dev teams
Security is owned by a separate team, dev teams are not empow‐
ered to make security decisions, and tooling is designed primar‐
ily for auditors, not builders.

Operating continuously
Security processes still heavily rely on manual gates such as
audits or result reviews, slowing down the continuous process.

Having security work against the business motivation of speed and
independence can’t end well. Development teams must choose
between slowing down, which hurts business outcomes, and cir‐
cumventing the security controls, which introduces significant risk.
Neither of these is a viable long-term option, so businesses must
change their security practices to match the DevOps reality.

To secure the business without slowing it down, companies must
adopt a dev-first approach to security.

7

Figure 2-1. Security gates slowing down continuous delivery process

What Is Dev-First Security?
Security programs must always start with an understanding of the
risks you face. If you don’t know what you’re looking to secure or
who you’re protecting yourself from, you’re likely to place your
guards in the wrong place. However, past that understanding, you
have a choice to make: do you prioritize the need to track that risk,
or the need to protect against it?

Most security organizations, whether consciously or not, choose the
former. The teams tasked to secure the organization (and holding
the budget to do so) are the ones in charge of audit and governance,
and they naturally place the need to understand your risk at the top.
This results in products that are focused on finding problems and
are attuned to a security person’s needs and understanding. These
tools are then retrofitted to be put into the development pipelines
but are unable to deliver on what developers need.

As its name implies, dev-first security means reversing the order:
putting the developer’s needs at the top of the priority list when
looking to secure your applications. It means asking yourself, “If I’m
a developer looking to build a secure application, what do I need to
do so successfully?” These tools still care about the security team’s
needs and understanding your security posture, but they focus on
helping developers secure what they build.

8 | Chapter 2: Dev-First Security

1 A CVE number is a universal ID for a known vulnerability, used to synchronize
between different tools referring to the same issue. The CVSS is a standard way of
defining the severity of a vulnerability, using a small set of predefined criteria.

This is a completely different angle and results in building entirely
different solutions to the same security threat. Let’s review a few key
differences.

Developer Context and Expertise
Developers operate in a different context and have different exper‐
tise than security folks do.

The most obvious difference is the lower level of security expertise.
Most developers won’t know what Common Vulnerabilities and
Exposures (CVE) or Common Vulnerability Scoring System (CVSS)
means,1 or that they should ask whether a known vulnerability has a
published exploit. These details must be simplified in the security
tools developers are given: for instance, simplifying CVSS to three
or four levels or highlighting important attributes like exploit
maturity. Figure 2-2 shows an example of such built-in expertise.

A less-known difference is that developers see vulnerabilities
through the lens of the app, not through risk. When a security per‐
son sees a vulnerable library, they see risk. If they zoom out, they’ll
want to see other vulnerable libraries or other apps with the same
flaw. Therefore, most security tools focus on governance dashboards
that show lists of all vulnerable assets.

Figure 2-2. Simplifying CVSS to a four-scale level and highlighting a
mature exploit in the wild

What Is Dev-First Security? | 9

For developers, though, the first question isn’t about risk, but rather,
about how the library connects to and affects the app. They don’t
look for other vulnerable libraries, but for other properties of the
same library, such as how outdated it is, so they can weigh the
impact of upgrading or replacing it. Figure 2-3 shows the difference
between a security-focused flat list of vulnerabilities, which focuses
on the risk, and a dev-first tree view of vulnerabilities, which focuses
on relation to the app.

Figure 2-3. Tree view and flat view

Last, although developers may lack security expertise, their knowl‐
edge of the application is far better than that of the security team.
For instance, a developer is likely to know whether a library is only
used during development, or whether certain functionality is only
accessible to administrative users. A good dev-first security solution
can leverage this knowledge for better usability and results.

Developer Experience and Affinity
No tool lives in isolation. Developers and security people alike judge
tools in the context of other tools they use around them and expect
solutions to be a good citizen in their local ecosystem. A tool that
deviates from the norms requires more attention and thought,
requires more time to become proficient in it, and introduces

10 | Chapter 2: Dev-First Security

cognitive load whenever you switch to it. Unless you are very moti‐
vated to use them, such odd ducks are best avoided.

Although this statement is true for both teams, those neighboring
tools are massively different. Security people use a large number of
auditing, governance, and compliance tools. They therefore expect
other solutions to work well in an audit context, offering functional‐
ity such as rich listing of results, exports to PDF, and integration
with risk dashboards. They have high tolerance for long tasks and
typically assume an expert user who wants to see all the info.

For developers, the surrounding tools are build tools. They focus on
helping individuals write code faster, identify and resolve problems
locally, and collaborate with teammates in a version-controlled fash‐
ion. They assume highly technical users, and look for automated
and fast tests to achieve yes/no answers so that they can be added to
the build.

These are just a few of many areas of difference. Developer tools also
offer different user experience (UX) patterns than security tools do,
are more often available to try self-serve, and typically offer rich and
well-documented APIs. Beyond the product, developer tooling com‐
panies behave differently, leaning toward more community collabo‐
ration and transparency, focusing on building versus risk reduction,
and so on.

Dev-first security solutions need to embrace the dev tooling ecosys‐
tem as their peers. This requirement applies to commercial, open
source, and home-grown tools alike, because at the end of the day,
they all need to be a natural part of a developer’s daily routine. These
tools also need to satisfy the needs of the security realm, offering the
right views and integrations, but the priority has to be clear: devel‐
oper experience comes first.

Security Audits, Developers Fix
“Whereas an auditor’s job is to find and prioritize issues, a developer’s
job is to fix them.”

Beyond context and experience, a developer looking at a vulnerabil‐
ity has a different job than the security person has. Security leaders
are tasked with understanding the flaws and risks in the system and
helping prioritize and act on that understanding. As a result, secu‐
rity tools and practices excel at finding security flaws, assessing their

What Is Dev-First Security? | 11

technical and business risks, and managing this list of vulnerabilities
over time.

Whereas an auditor’s job is to find and prioritize issues, a develo‐
per’s job is to fix them. Good auditors and security teams also aspire
to have issues fixed, but they have little control over accomplishing
this. In fact, many security tools advertise logging a bug-tracking
ticket as a remediation action, despite that it doesn’t actually fix any‐
thing. For developers, a tool that reports problems without helping
to resolve them isn’t seen in a favorable light.

A dev-first security solution must therefore have a strong focus on
fixing issues. For every reported issue, you should ask yourself what
a developer needs to do to resolve the issue. How can the tool help
simplify this task? The answers will help you walk the extra steps
from the auditor’s point of view to the developer’s needs.

Ideally, the tool would be able to remediate the problem automati‐
cally, saving the developer precious time. When that’s not possible,
consider what scaffolding you can still offer to simplify remediation:
for instance, by prompting developers to approve or decide on the
fix but still automating the process itself. See Figure 2-4.

One note of caution, though: there’s a difference between automat‐
ing remediation and commandeering control. The security world
has a long history of solutions that aim to detect and block attacks
unilaterally, ranging from intrusion prevention systems (IPSs) to
web app firewalls (WAFs). More recently, runtime application self-
protection (RASP) solutions have been making the same claim,
instrumenting applications to build security controls into them
automatically.

12 | Chapter 2: Dev-First Security

Figure 2-4. Example of Snyk fix pull request

These solutions can be very valuable in reducing risk, but they are
not developer-friendly tools. They modify the originally coded func‐
tionality (typically after testing) and carry a real risk of breaking
legitimate user actions. More important, they take control away
from the developer to prevent or fix such functionality breakage.
Instead of helping developers secure their apps, they convey a mes‐
sage that the apps are bound to be broken and aim to patch them
after the fact.

Dev-first security solutions should simplify remediation but aim to
do so as part of the developer’s job, instead of taking over the
developer’s responsibilities.

What Is Dev-First Security? | 13

Now that we understand what dev-first security means, let’s discuss
how it relates to two other common terms in this field: shift left and
DevSecOps.

Shift Left Is Not Enough
The term shift left has been used by the AppSec industry for decades.
It originates from a waterfall development process visual like the one
in Figure 2-5, depicting a left-to-right release process, starting with
design and coding and proceeding through building and testing to
deployment and operation.

In this flow, security audits were typically done only during deploy‐
ment (or in production). Security findings required going all the
way back to the start, making them costly and time consuming to
fix. The call to shift left advocated moving security controls earlier
so that issues could be found and remediated sooner and thus with
lower costs. This term is not reserved for security and is often
touted in other aspects of software quality.

Figure 2-5. Shifting left in a waterfall development process

In the DevOps era, shifting left isn’t quite as clear. The core concept
behind it is as valid as ever: the shorter the gap between writing a
bug and finding it, the cheaper it is to fix it. However, two key parts
are missing.

First, there is no “left” in a continuous process, which is rightfully
depicted as an infinite process. DevOps accepts that certain bugs

14 | Chapter 2: Dev-First Security

2 CI, often called a “build,” processes source code and packages it. CD ships this package
to the next step, such as deploying it on cloud. Tests are often incorporated into both
steps to find flaws and “break” the process if it doesn’t meet certain conditions.

will only be found in production and is willing to sacrifice some
level of verification in favor of a faster delivery cycle. It relies on
methodologies like observability to help find such issues post-
deployment and doesn’t necessarily see that as inferior to earlier
detection. In other words, it’s often better to find an issue shortly
after deployment than to add a costly and slow security test to con‐
tinuous integration/continuous delivery (CI/CD) pipelines, even if
it’s “further left.”2

Second, shift left doesn’t reflect the change in ownership and drive
for independent teams. The truly important change isn’t whether
you shift the technical testing left, but rather, whether you shift the
ownership of such testing to the development team. Pipeline tests
that require security teams to review their results, due to false posi‐
tives or required expertise, can be more harmful than post hoc
audits. Each dev team should be equipped and empowered to decide
what the best place and time is to run the tests, adapting it to their
workflows and skills.

If you have to pick a direction, you should focus less on shifting left
and more on going top to bottom. This means replacing a control‐
ling, dictatorial security practice with an empowering one, as I men‐
tioned earlier.

DevSecOps Versus Dev-First Security
The other common term used to describe the transformation
required in the security industry is DevSecOps.

In its broadest sense, DevSecOps means embedding security into
DevOps practices. It’s a term trying to work itself out of a job, reach‐
ing a state where security should just be a natural part of DevOps,
not something that needs to be called out separately. In the mean‐
time, it’s used to represent the required change and allow security
people and programs to identify themselves with it.

DevSecOps is a very broad term, and those using it typically mean
one of three things:

DevSecOps Versus Dev-First Security | 15

• Adapting security to DevOps technologies, such as containers,
IaC, or the elastic compute cloud itself

• Adapting security to DevOps practices, such as continuous
deployment, elastic scaling, or observability

• Adapting security to the DevOps shared ownership mindset,
driving cultural change toward seeing security as everybody’s
responsibility

All three are required changes, and their order evolves from tactical
to strategic. In the short term, the need to secure technologies that
DevOps teams embrace is urgent and top of mind. In the long term,
you have to adapt your security culture and change security practi‐
ces to enable security to keep up with the rest of the business.

DevSecOps and dev-first security have similar aspirations of adapt‐
ing security to the DevOps world. They have a lot in common and
thus can often be used interchangeably, but they have a different
starting point: one in dev, and the other in ops.

DevSecOps typically focuses on ops changes. It rotates around the
convergence of SecOps and DevOps practices and the post-
deployment world, covering topics such as managing cloud infra‐
structure, runtime observability, and incident response processes.
Like modern ops teams before them, who renamed themselves
DevOps teams to signal their different approach, we see modern
SecOps teams calling themselves DevSecOps teams.

In contrast, dev-first security revolves more around developers and
their work. It focuses on content in repositories (repos), code edit‐
ing, and review processes, pipelines, and more, embedding security
controls in them. It deals primarily with the work to get secure
applications to production, whereas DevSecOps gives more atten‐
tion to post-deployment work.

In addition, dev-first security is never used to describe a team, only
an approach. Tools and practices may describe themselves as dev-
first, but I’ve yet to encounter a dev-first security team. That said,
the need to signal your different approach is felt in AppSec too, and
thus many forward-thinking AppSec teams have renamed them‐
selves product security teams, reflecting their broader scope and
dev-first security thinking.

16 | Chapter 2: Dev-First Security

The line between DevSecOps and dev-first security is blurry. Many
DevOps professionals identify as developers, and developers have
significant post-deployment responsibilities. In this book, I focus on
dev-first security, but I find both terms and movements valuable.

Conclusion
Dev-first security is a new approach to security. It biases in favor of
adoption by those who can fix the problem versus those who man‐
age it. However, a security program that cares only about the needs
of developers is not good enough either. A good dev-first security
program has to help security teams govern successfully and keep the
organization secure.

It requires two teams working together (see Figure 2-6):

• An empowered development team, equipped with the right
tools and mandate to secure what they build

• A supportive security team, focused on making security easy for
developers and providing the security expertise and governance
required to keep the company safe

Figure 2-6. A successful dev-first security program requires collabora‐
tion between dev and security

Conclusion | 17

CHAPTER 3

Securing the Entire
Cloud Native App

Alongside DevOps, which drove the need for the dev-first security
approach just discussed, we’ve seen the evolution of the cloud and
the era of cloud native applications. As I mentioned in Chapter 1,
cloud native apps have a broader scope than their predecessors,
growing to include more elements of the underlying stack.

This change in application scope requires a change in the scope of
application security too. This chapter discusses a new and expanded
scope for AppSec called Cloud Native Application Security (CNAS).

Before we dig into the details, let’s take a moment to understand this
transition and what the new scope holds.

From IT Security to Cloud Security
Before the cloud, applications were typically made up of code and
libraries and ran on a large central stack managed by the IT depart‐
ment. If a developer wanted a server to run the app or needed a port
opened, they opened a ticket with their justification, and IT pro‐
cessed the request. Even after the resource was supplied, the respon‐
sibility for ongoing patching of this server or monitoring the opened
ports sat with IT, who would reach back to dev only if necessary.

19

Most of the IT/ops and security industry focused on this reality. IT
teams are, by and large, quite security minded and would balance an
incoming functional request with their responsibility to keep the
data center secure. To serve these teams’ needs, a rich set of solu‐
tions came to be, helping them manage and secure fleets of servers
and infrastructure. These included config management databases
(CMDB), patch management, vulnerability management tools, and
more. These solutions were designed for IT teams, tuning—as dis‐
cussed in Chapter 2—for their needs, context, and surrounding
tools.

The cloud introduced a very different reality. Instead of needing to
ask IT for a server, a developer can just spin one up through a sim‐
ple API or a few web console clicks. Instead of asking for access to
an IT-managed database, the same developer can pick an open
source container or use a cloud service. Opening ports, changing
permissions, and many other aspects of infrastructure administra‐
tion suddenly became available to developers, on demand, without
delay. Removing the delay unlocked a burst of productivity and
innovation and was a key force in the digital transformation tidal
wave, but brought along some scary security implications.

Although developers could easily spin up infrastructure, they
weren’t proficient or well equipped to manage and secure it over
time. For many enterprises, the result was a sprawling, ill-managed,
and often vulnerable cloud surface; an alarming number of
unpatched containers; and a wave of breaches due to poor security
hygiene. To help regain control, a new class of container security
and cloud security posture management (CSPM) tools came to be,
using cloud APIs and other techniques to track what’s deployed and
flag potential holes, as Figure 3-1 shows.

20 | Chapter 3: Securing the Entire Cloud Native App

Figure 3-1. Risks that required IT security solutions before cloud now
require an application security solution

From Cloud Security to Cloud Native
Application Security
Alongside CSPM tools helping to get IT/ops back on their feet,
developers also evolved their use of the cloud. Instead of ad hoc
actions to set up a cloud environment, tools such as Docker, Terra‐
form, and others were created to unlock IaC, a means to describe
infrastructure as though it’s just part of the app. These powerful
tools up-leveled the previous IT/ops processes, introducing far bet‐
ter repeatability, local testing, version control, and other collabora‐
tion capabilities previously reserved for custom code development
alone.

From a security perspective, these tools introduce a new reality.
CSPM is useful, but those solutions find the problem after the fact,
meaning the flaw was already deployed, limiting them to visibility
and fast response. IaC, on the other hand, provides an opportunity
to find security mistakes before they are deployed, by testing for
flaws as part of the CI/CD pipeline, driving far better efficiency.

From Cloud Security to Cloud Native Application Security | 21

At first glance, security controls for containers or IaC may seem
similar to their ticket-based IT security predecessors. They deal with
the same risks, such as an unpatched server or an open port, and
offer an opportunity to weigh a request for functionality against the
security risks involved. However, in practice, the user for the two
solutions is entirely different.

Containers, IaC, and their brethren are managed by developer tools.
They reside as files in a source code repository, are edited through
Git-based collaboration, and get applied by running a build. Fur‐
thermore, they are often managed in the same repository as the rest
of the app, and the logic of the app’s custom code is often inter‐
twined with the underlying containers and infrastructure (infra).
Last, they are increasingly managed by the same developers building
the rest of the app.

Securing containers and IaC requires an application security solu‐
tion, not an IT security solution. Just like the rest of their AppSec
peers, these solutions must be dev-first and fit elegantly in the
developer’s workflow and ecosystem of tools. Over time, as the lines
blur between the app’s custom code and underlying cloud infra, we
must similarly combine securing those parts in one holistic view.

This combined approach of securing all parts of a cloud native app
is what we call CNAS, an expanded scope of the historic application
security space.

Securing operating systems and infrastructure as AppSec (instead of
IT security) requires some rethinking. The next sections shed light
on some key differences in the two biggest new players in the
AppSec landscape: containers and IaC.

Container Application Security
Container images look an awful lot like VM images, but they are
lighter in file and memory footprint and thus faster and cheaper to
scale. Just like VMs, they hold within them a filesystem and, notably,
an operating system, on top of which applications are installed and
run. They offer similar operational advantages, including running
multiple software machines on a single hardware device, just with a
different performance profile and interface. Last, from a security
perspective, they need to be secured in a similar fashion, ranging
from keeping that operating system patched to monitoring a run‐

22 | Chapter 3: Securing the Entire Cloud Native App

ning container to ensure that it wasn’t compromised, just like you
would a VM.

As a result, security teams asked to secure containers, typically after
business units already started adopting them, default to applying
their VM security practices to the task. More specifically, since con‐
tainers are used mostly in cloud environments, security teams tend
to apply the same security controls used to secure cloud VMs to
containers.

This default motion is applied both for runtime container security
and for securing container images, but it’s only effective for the
former.

Runtime Security for Containers Versus Cloud VMs
For the purpose of securing containers in runtime and identifying
and reacting to attacker activity, treating containers like cloud VMs
is a pretty good starting point. The two entities are similar in most
of the areas that matter.

• Containers and cloud VMs are both ephemeral (short-lived)
and scale elastically, requiring monitoring software that can
identify machines wisely and cluster them well.

• Attacks on cloud VMs and containerized systems mostly target
the operating system and apps they hold, with very few target‐
ing specific VM or container vulnerabilities, meaning attack or
compromise indicators are similar for both.

• Both containers and cloud VMs are API driven and designed to
be ephemeral, allowing automated recovery and resetting of
machines.

That said, containers do require cloud VM security systems to
evolve to cope with a new level of scale and speed. Most container
clusters run an order of magnitude more VMs than cloud VM set‐
ups, are updated on a far more frequent basis, and run more ver‐
sions in parallel. Containers tend to be more immutable than cloud
VMs, scale up and down much faster, and are more likely to be
deployed across multiple clouds.

Thus, runtime container security solutions need to be better than
cloud VM ones, but along the same path. A great runtime container
security solution can easily handle securing cloud VMs too; it just

Container Application Security | 23

needs to add support for a different virtualization and orchestration
platform. In other words, runtime container security solutions are
an evolution of their cloud VM predecessors, whereas securing con‐
tainer images requires a revolution.

Securing Container Images Versus Cloud VMs
If their operations seemed similar, building containers couldn’t be
more different from building cloud VMs.

Cloud VMs are built via Secure Shell (SSH) and IT tools. The most
common pattern is to create golden images by IT manually or by
using tools like Puppet and Chef and store them as reusable VMs
(e.g., Amazon Machine Images [AMI]). Apps are installed on top of
those VMs, either creating their own images ahead of launch or
installing the app part at boot time. Over time, IT maintains those
golden images, patching them and asking downstream users to
update too.

This process has pros and cons but has one big fundamental flaw:
it’s separate from the workflows for building the app. This results in
myriad common problems, such as the following:

• Golden images are modified without testing the apps that run
on them, but these underlying changes can cause those apps to
break unexpectedly.

• Golden images change on a schedule independent of the app,
introducing risk and noise at potentially sensitive times in the
app’s own rollout schedule.

• App-specific images have no inherent traceability to the golden
image they were built from, relying on error-prone manual
tracking to know when they need to be patched due to golden
image security updates.

• Golden images are often updated inline, with little or no ver‐
sioning or storage of past versions, making it hard to track
patching or rollback.

Containers, especially after the introduction of Docker, are designed
to address this gap. Containers are declared as source code (usually
using a Dockerfile), benefiting from Git versioning and collabora‐
tion. Their layers and, notably, base image are clearly declared, as
Figure 3-2 shows, offering traceability to external or centrally

24 | Chapter 3: Securing the Entire Cloud Native App

managed golden images. They are built using a standard CI/CD
process and stored in a versioned registry, providing the tracking
and rollback support needed for proper continuous deployment.

Figure 3-2. Visual of a Dockerfile and the layered container image
built from it

Overall, containers are built as applications, not infrastructure, and
securing them requires an application security solution. This means
that instead of evolving your VM patching flows to include contain‐
ers, you need to evolve your AppSec practices to do so. You need to
tackle the same risk—having an unpatched or misconfigured server
—through an entirely different lens.

Container Application Security | 25

Container Security Ownership
As a step further, it’s important to realize that containers aren’t just
built the same way apps are built; they’re built as part of an app. The
Dockerfile defining a container usually sits in the same repository as
the app that runs on it and is edited by the same developer changing
the code in the file next door. The same build compiles both the
app’s code and the container it will be stored in, and the combined
result is stored together in the registry. Containers are a core part of
the application being built and shipped.

This creates great alignment between apps and their underlying OS.
When updating a container, the ensuing build process will ensure
that the app running on it will keep functioning as it should. When
a problem does occur, the application can be rolled back to a stable
state, including its underlying virtual servers. But it also creates a
coupling; containers have to be built and secured by the same people
building and securing the application’s code.

This is a change in ownership that shouldn’t be taken lightly. We’re
asking developers to take on a new responsibility, one they weren’t
expected to do a decade ago. We need developers to see it as part of
their job to pick a secure operating system, minimize its content and
user permissions, and patch it on a regular basis. We need to educate
dev teams on how they can take on these new risks and equip them
with the tools and mandate to do so successfully.

Last, moving container security into AppSec requires rethinking our
priorities. Should your dev team prioritize avoiding and fixing vul‐
nerabilities in their own custom code, or patching the container they
use to address known vulnerabilities? Historically, developers were
heavily focused on the code they wrote, but not patching your server
is a far more common way to be breached. In the past, these two
risks were part of different backlogs; now they’re on the same list.

Securing Containers as Apps
Rethinking container security through a dev-first AppSec lens is a
big endeavor, but there are a few key areas to focus on to get the
change started. These represent necessary changes, but also oppor‐
tunities to use this transition to be more secure with less disruption.

First, test containers early, even before CI/CD kicks in. The fact that
Dockerfile is a source code file means it can be inspected when

26 | Chapter 3: Securing the Entire Cloud Native App

edited in the IDE to flag security mistakes. It can be reviewed auto‐
matically in pull-requests before it’s even built. Such early detection
can flag known vulnerabilities or bad base images before they are
merged, saving time and effort to fix them and reducing the chance
of a disruptive broken build.

Second, focus on fixing flaws, not just finding them. As mentioned
earlier, although an auditor’s job may be to find issues, a developer’s
job is to fix them. Said differently, it’s easier for developers to fix
problems than for auditors to, and we should make the most of this.
Make sure your security tools invest in making remediation easy,
whether through clear guidance, automated-fix pull-requests that
modify Dockerfiles, or automated build triggers to drive patching.
This will clearly help you fix more holes but will also improve devel‐
oper adoption of the tools.

Third, invest in base image management and relating vulnerabilities
to them. When you audit an image as a filesystem and find a vulner‐
able artifact, you don’t care which layer it arrived from. If you’re
auditing the same image as source code, the origin of each vulnera‐
bility becomes key. A vulnerability in a base image requires updating
the base image, or perhaps simply rebuilding to get the new patch. A
vulnerable line in the Dockerfile requires editing your source code,
an entirely different action. Make sure you clearly separate the two
and invest in managing those base images, because most vulnerabili‐
ties arrive through them.

Last, introduce container security gates into your CI/CD. Although
detecting and fixing locally or in Git is ideal, security flaws can still
slip past those opt-in steps. Take advantage of the automation con‐
tainer platforms that offer to introduce guardrails into your pipeline,
preventing artifacts that introduce severe security issues from being
deployed to production. Just keep in mind that breaking the build is
a disruptive action, so be careful when picking the security thresh‐
olds that require it.

IaC Application Security
Hot on the heels of container adoption is the growing use of IaC.

IaC came to be in two waves. The first wave was led by tools such as
Puppet, Chef, and Ansible and introduced much-needed automa‐
tion to the world of VMs. It replaced sysadmins SSH-ing into a

IaC Application Security | 27

remote machine and setting it up each time with consistent and
automated scripts, and unlocked the ability to patch machines regu‐
larly and apply security configuration policies at scale. I’ll refer to
this wave of solutions as IT automation tools.

The second wave came with cloud and was led primarily by Terra‐
form, which excels in configuring cloud services. Although its
predecessors were used primarily by IT to automate their work, Ter‐
raform became the tool of choice for developers and DevOps teams
to tune the infrastructure to the application that ran on it.

Puppet and others have since adapted to this new world, and new
IaC players like Pulumi came to be. In addition, alongside Terra‐
form, platform-specific IaC solutions were created, such as Kuber‐
netes Helm charts, AWS CloudFormation, and Azure’s ARM. Today,
most IaC solutions are cloud and application oriented, and IaC is
the clear best practice for defining application infrastructure in the
cloud.

As with containers, this new IaC wave introduced a bigger change
than new declarative languages or cloud-related features. IaC is now
managed as part of a continuous software pipeline, with source files
in Git repos, build pipelines applying changes, and even increasingly
using standard programming languages. In other words, IaC files
are managed as applications, not as IT—and need to be secured
accordingly.

Securing Infrastructure as Applications
“We need to shift from securing the infrastructure to securing the code
that creates it.”

Securing infrastructure before IaC involved a lot of manual work, ad
hoc scripts, and spreadsheets to track what was installed where and
keep the perimeter secure. With the advent of IT automation tools,
discovery of the state of your infrastructure became feasible, as did
applying security policies at scale.

However, though rules could be applied more easily, defining them
remained difficult. Applications require many network access paths
and system permissions to operate, and those needs change fre‐
quently. Communicating those needs through tickets led to slow
execution, complex tracking, and a lot of frustration. At the end of
the day, infrastructure was often overly permissive, which increased

28 | Chapter 3: Securing the Entire Cloud Native App

risk, or was too strict, which caused applications to break—a bad
outcome either way.

IaC offers an opportunity for much better alignment, improving
security while reducing risk of breakage. By defining infrastructure
needs as a natural part of the application, we can ensure that they
are “just right”: not too open, not too closed. To achieve this, we
need to change our perspective and shift from securing the infra‐
structure to securing the code that creates it.

This leads us again to application security. We need to assess IaC
files as source code and find security vulnerabilities in them. These
flaws should be surfaced to the developers writing them, helping
them understand and fix them as they code. When a weakness is
found in production, it should be solved by going back to the code
and fixing it, not by manually modifying the infrastructure previ‐
ously deployed (though that’s a legit temporary patching action).

As with containers, IaC security isn’t an evolution of IT automation;
it’s an entirely new perspective. To secure infrastructure as code, we
need to roll the application forward, anticipating how it would man‐
ifest in production, as opposed to rolling infrastructure backward.
Over time, the source of truth should be your source code, not the
assets deployed, and your security will depend on how well you
secure that code.

Helping Developers Secure Infrastructure
Securing infrastructure is a complicated domain. Although IaC
technology resembles software development, most developers don’t
know which configurations are secure and which ones aren’t. Few
developers will be familiar with Kubernetes’s securityContext
attribute or know that CloudTrail logging needs to be disabled, and
the growing complexity of cloud platforms implies that this gap will
never truly go away. To address this challenge, you need to invest in
education and automated inspection. See Figure 3-3 for some IaC
rules that Snyk applies.

For education, focus more on logical configuration than on techni‐
cal implementation. For example, your dev teams should under‐
stand the importance of minimizing the permissions a service is
given, reducing the scope of who can access it, and securing the data
coming into it and going out of it. They should learn to appreciate
how observability helps security and how to balance data retention

IaC Application Security | 29

https://oreil.ly/Y2Seh
https://oreil.ly/Y2Seh

for forensic purposes with a privacy-driven desire not to retain per‐
sonal information. These are complicated topics that will take a
while for teams to truly master, but they are an important invest‐
ment in upskilling your team.

Figure 3-3. A few examples of many IaC rules that Snyk applies

For the technical implementation, however, tools should be your key
solution. IaC scanners such as Snyk IaC, tfsec, and HashiCorp Senti‐
nel can map your security requirements to every platform’s imple‐
mentation details and inspect your source code as it changes.
Although they can’t replace your policy decisions, such tools also
embed industry best practices that can make it easy to get started
and kick-start developer education.

30 | Chapter 3: Securing the Entire Cloud Native App

1 A regression occurs when a code addition unintentionally breaks previously working
functionality.

Beyond this high-level advice, here are a few quick tips on how to
embrace an AppSec approach to securing infrastructure, which at
this point in the book should start sounding quite familiar:

• Find issues early, before the infrastructure exists. Analyze source
code files in IDEs and Git to find problems and guide develop‐
ers to fix them.

• Invest in fixing IaC source code. When flagging problems, help
developers fix them by raising clear potential solutions, auto‐
matically creating fix pull-requests and more.

• Automate IaC testing. Software needs to be tested to avoid
regressions,1 and IaC is no different. Invest in unit tests, which
in turn will give dev teams confidence to reduce permissions
with less risk of breakage.

Conclusion
Embracing the cloud and cloud native development is about far
more than technology. It’s an enabler for independent teams to run
faster, adapting to market demands faster and driving superior busi‐
ness outcomes. To achieve this, application teams are given owner‐
ship and control over more layers in the stack, and we need to make
sure they can also keep those layers secure.

CNAS is the perspective we need to make this happen. It requires us
to understand that the same people previously tasked solely with
securing their code now make decisions around so much more. We
discussed containers and infrastructure, but dev teams also need to
manage data, service, API gateways, and much more, all areas where
decisions can have significant security implications.

Each of these layers requires us to rethink our security controls in a
dev-first fashion. As we’ve seen with containers and IaC, the result‐
ing solution could look very different from its predecessors.

Conclusion | 31

CHAPTER 4

Adapting to Dev-First CNAS

Adopting CNAS requires significant changes to the way we secure
applications and infrastructure. Making the shift is a journey, one
that is different for every organization, and even for different parts
of the same org.

Although choosing the right path is your decision to make, patterns
and best practices are starting to emerge for getting it right. In this
chapter, I suggest a few areas in which to consider breaking the sta‐
tus quo, and how.

Rethinking the Security Org Structure
Organizations are typically split based on areas of responsibility. As
you shift your view to see securing parts of your infrastructure as an
application security problem, reconsider how you structure the
security org. More specifically, consider whether to change the scope
of responsibility for the application security team.

In addition, as your security practices become more dev-first and
focus on empowerment of developers, your requirements for this
AppSec team change. You need more empathy and program man‐
agement alongside more engineering capacity. You need more build‐
ers and fewer breakers.

To help you evaluate your security organization structure, here are
the three most common team scopes I see in the AppSec world:
Core AppSec, Security Engineering, and the newer Product Security

33

scope. These should serve as reference points for how to structure
your org, not perfect models to adopt.

Core Application Security Team
Let’s start from the status quo, keeping the same scope for the appli‐
cation security team. Since this is the default state, most organiza‐
tions use this team scope—at least as a starting point.

The mandate of the core AppSec team is securing the custom appli‐
cation code and business logic as well as the open source libraries
being used. They typically own the classic Application Security Test‐
ing (AST) suite, including static, dynamic, and interactive AppSec
testing (SAST, DAST, and IAST) to find vulnerabilities in custom
code, and software composition analysis (SCA) tools to find vulner‐
able open source libraries. In addition, these teams often develop
security education and training and, potentially, vulnerability man‐
agement or bug bounty. In some cases, they may own runtime appli‐
cation protection too, using RASP or WAF tools.

Core AppSec team members typically need to be subject matter
experts in secure coding and have some experience running audits
and security code reviews. They need good developer empathy to
collaborate with dev, which in turn requires some ability to under‐
stand or relate to code but doesn’t require full software development
credentials.

The main advantage of sticking to a core AppSec team is the tenure
it has in the industry. For hiring, it makes it easier to hire professio‐
nals who bring with them experience across the entire team domain.
For tooling, it’s a space where the tools and practices are well docu‐
mented. And from an organizational perspective, most of the indus‐
try will assume an AppSec team looks like this core AppSec team.

Although the scope of a core AppSec team is the status quo, its
methodologies have often become more dev-empowering. AppSec
teams often assign individuals on the team to be the partner to sev‐
eral dev teams, helping foster better collaboration. Many others run
Security Champions programs, helping them get scale and embed
more security expertise in the dev team. Although the scope is
mostly unchanged, the internal practices of core AppSec teams don’t
have to be traditional.

34 | Chapter 4: Adapting to Dev-First CNAS

Security Engineering/Platform Team
Automating security steps is key in a modern development environ‐
ment. Fast CI/CD pipelines leave no room for manual review,
requiring automated pipeline tests instead. In addition, developers
are not security experts; they have less time to devote to security
and, thus, need tools that have embedded security expertise and can
offload or facilitate security decisions.

Building and operating security tools is no easy feat, especially in
large organizations where different dev teams have vastly different
requirements. To help boost automation, some organizations cre‐
ated dedicated security engineering teams that focus on building
internal tools and integrating external tools, all meant to bolster
security.

Security engineering teams are made up of software engineers with a
slight bias for security, and operate like a complete DevOps engi‐
neering team. They typically build, deploy, and operate the services
they build, and use the same methodologies other engineering teams
use to run their agile processes and manage product backlog.

If the volume of work isn’t big enough to warrant its own team, this
same activity is typically embedded in the core AppSec team. How‐
ever, though teams titled Security Engineering are pretty consistent
in their charter, individuals with the (increasingly common) Secu‐
rity Engineer title vary greatly in their responsibilities. Some are
software engineers as described, whereas for others the “Engineer”
part of the title refers to the security realm instead.

Security engineering teams are a great way to truly level up the
amount of automation and are a great parallel team to ops-oriented
platform or site reliability engineer (SRE) teams. In fact, in quite a
few cases, the platform team’s scope has been expanded to include
building and operating such security tools. It’s also a great way to get
software engineers into the security team, helping with the talent
shortage problem and with building more dev empathy in the secu‐
rity team.

Product Security/Cloud Native AppSec Team
A more recent addition to the security team patterns is the product
security team. These teams have a bigger scope that includes not
only the application code itself, but everything to do with the

Rethinking the Security Org Structure | 35

product. Most notably, two key additions are capturing the full
CNAS scope and helping build security features in the product itself.

Full CNAS scope
Growing to include the CNAS scope is a natural result of rethinking
certain infrastructure risks as application security. As discussed in
Chapter 3, technologies like containers and IaC are driven by the
same developers writing custom code and using the same practices
and tools. To support this change, AppSec teams need to support
those engineers in doing so successfully. Teams that embrace this
broader scope often refer to themselves as product security teams.

This expanded CNAS scope means product security teams work
across a bigger portion of the software development life cycle. It
includes more engagement with production deployments and even
operations, leading to overlap with the more ops-focused cloud
security team. In practice, cloud native development means that
cloud security is affected by both dev and ops teams, and product
security teams cover the former.

Note that many core AppSec teams are expanding to embrace the
full CNAS scope without officially changing their name and man‐
date. Choosing and implementing solutions to scan container
images for vulnerabilities and audit IaC files is increasingly the
AppSec team’s domain. Although it’s safe to assume product security
teams capture this complete scope, such a rename is not strictly nec‐
essary, and many AppSec teams have evolved without such a
declaration.

Product security features
A bit unrelated to CNAS, but still noteworthy, is the involvement of
product security teams with a more user-oriented part of security:
security features. As user awareness of the importance of security
grows, many products look to build dedicated security features and
differentiate through them. Deciding what security capabilities are
of value requires a level of security understanding that dev teams
may not have, but security teams do. Product security teams often
embrace an explicit role here, collaborating with product managers
(PMs), who own the complete product functionality and value
proposition, more than ever before.

36 | Chapter 4: Adapting to Dev-First CNAS

This responsibility plays an important role in the relationship
between application and security teams. Security controls are a
means to mitigate risk, but being able to present this risk mitigation
as a security feature means it can help grow revenue instead. Grow‐
ing revenue is another shared goal for the two teams, and one that is
far more visible than risk reduction, making it easier to celebrate
success.

The evolution of product security
Product security is a new title and scope and is still being defined.
Given its broader scope, it’s often a parent title or group, which
encompasses the other mentioned teams. In some cloud native
organizations, product security is the primary scope of the chief
security officers (CSOs), whereas a few others started naming lead‐
ers as chief product security officers (CPSOs).

Adrian Ludwig, Atlassian’s chief information security officer (CISO),
phrased it best, saying, “Product security’s goal is to improve the
security posture of products and represent customers’ security
expectations internally to the development team”. The title is used
by other companies such as Twilio, Deliveroo, and Snyk, and I
believe it’s the right way to address CNAS.

What About the DevSecOps Team?
You may have noticed I didn’t name a DevSecOps team, and that
wasn’t by chance. Like DevOps, DevSecOps isn’t a team; it’s a move‐
ment, meant to embed security into the core dev and operations
work. In my opinion, it shouldn’t be the title of a team.

However, just like DevOps teams exist, so do DevSecOps teams—
and their mandates vary greatly. At times, they’re really a cloud secu‐
rity team, focusing on operations and runtime security. Other times,
they’re more platform-like, with scopes similar to security engineer‐
ing teams. Since the title doesn’t imply a specific set of responsibili‐
ties, the scope of a DevSecOps team isn’t something that can really
be defined.

However, what all those teams have in common is that they are for‐
ward thinking. DevSecOps aims to change how we do security, and
DevSecOps teams, wherever their scope, consistently see themselves
as change agents. They embrace automation and cloud, favor

Rethinking the Security Org Structure | 37

https://oreil.ly/a98hf
https://oreil.ly/a98hf
https://oreil.ly/a98hf
https://oreil.ly/RcU8y
https://oreil.ly/ptyjD
https://snyk.io
https://snyk.io/devsecops

engineering security solutions over running audits, and aim to
empower dev and ops teams to secure their work on their own.

Rethinking Tooling
Alongside organizational structure changes, CNAS and dev-first
require a reevaluation of your toolkit. Given this new perspective,
you should reconsider the most important traits you’re looking for
in a technology solution and how you want tools to be bundled.

There are many ways to reevaluate tools, but I would suggest focus‐
ing on three primary areas: dev adoption, platform scope, and gov‐
ernance approach.

Developer Tooling Caliber
If our goal is to get developers to build security into their daily work,
we need to make sure we equip them with tools that optimize for
that goal. If you buy solutions designed for auditors and ask devel‐
opers to use them, you’re unlikely to be successful.

Developers, unsurprisingly, are used to using developer tools. These
tools represent an entire industry, which evolved its own best practi‐
ces around what makes a great developer tool. To help you choose a
security solution developers will embrace, you should evaluate these
tools against developer tooling best practices and see how they fare.

Here are a few of the common traits of a great developer tool:

Successful self-serve adoption
Practically all successful dev tools have great self-serve usage,
including easy onboarding, intuitive workflows, and great docu‐
mentation. This is the way developers like to consume tools,
and it forces vendors to ensure that their tools relate to develop‐
ers without a salesperson pushing it. Unless you want to be that
salesperson promoting a tool to your developers, look for tools
with a proven track record of self-serve adoption by dev.

38 | Chapter 4: Adapting to Dev-First CNAS

Seamless integration into workflows
Dev tools, for the most part, look to meet developers where they
are instead of asking them to open yet another tool. They inte‐
grate elegantly into their IDE, Git, and pipelines and provide
value at the right point in time. Integrations are about more
than technical hooks; they need to adapt to workflows and best
practices, or they will be rejected.

Rich API and automation friendly
Although opinionated integrations are needed to get started, a
dev tool must also be a Swiss Army knife. A rich API and
automation-friendly client (CLI/software development kit
[SDK]) are mandatory, both to tune the tool to every pipeline
and to allow the community to build on it. If you can’t build on
a tool, it’s not a great dev tool.

Adoption by open source and community
Developers look to fellow developers to validate a tool’s credibil‐
ity, and open source adoption is the best indicator of that. See‐
ing open source projects integrate a security tool or open source
projects that build on it are great developer community valida‐
tions. When inspecting a security tool, inspect its adoption
amid open source and draw your own conclusions.

These are just a few of many dev tool best practices. They should be
added to the security-specific recommendations around dev-first
security from Chapter 2. In addition, make sure you involve actual
app developers when evaluating any tool, to get a real-life perspec‐
tive on how well it fits into their surroundings (see Figure 4-1).

Rethinking Tooling | 39

Figure 4-1. Examples of developer-friendly security tools

Platform Scope
AST platforms today are primarily focused on custom code and,
perhaps, the open source libraries it consumes. Tool suites are pri‐
marily composed of SAST, DAST, and IAST, with SCA recently
added to the mix. As you embrace the broader cloud native applica‐
tion scope, reconsider the makeup of the platform.

40 | Chapter 4: Adapting to Dev-First CNAS

To start, let’s consider what tools benefit from being part of a single
platform. They can be divided into a few big buckets:

Shared users
If different tools are meant for different primary users, there’s
little need for them to be part of a single platform because
they’ll be used separately anyway.

Shared workflows
If multiple tools are used in a similar fashion and integrate in
similar points of the user’s workflow, you can save the integra‐
tion time and user time and effort by combining them instead
of requiring engagement with multiple separate tools.

Shared prioritization
If the action items from different tools should be prioritized
against one another, sharing a backlog can increase efficiency
and results.

Multiplied value
Finally, the strongest driver for tools to share a platform is when
using tools together can enhance each tool.

This criterion naturally explains why technologies like SAST
and SCA fit well in a single platform. Both serve the same devel‐
oper users, run scans and engage users in the same spots, and
share a backlog of security vulnerabilities the same developer
will need to prioritize between. In advanced SCA solutions,
SAST technology can indicate whether your custom code
invokes the vulnerable code in a library, providing greater accu‐
racy—hence multiplied value.

The same logic applies when you consider adding container and IaC
security to the same platform of SAST and SCA:

Shared users
Containers and IaC are now secured by developers, just like
SAST and SCA, who would rather not have multiple disparate
products to learn and engage with.

Shared workflows
Securing containers and IaC requires integration across the life
cycle, such as IDE, Git, and build integrations, just like SAST
and SCA.

Rethinking Tooling | 41

Shared prioritization
The same developer needs to spend cycles fixing a container or
IaC vulnerability or one in the code or libraries—all one backlog
for securing the app.

Multiplied value
There are many ways in which securing these components com‐
bine. Scanning containers requires exploring the app inside,
knowing the infra config helps prioritize code and library vul‐
nerabilities, and understanding the flow across components
helps mitigate issues; this is precisely what you do when triaging
a vulnerability.

This logic continues to hold even as the CNAS scope expands, and I
encourage you to think about your CNAS tooling as one platform.
An easy guideline is that anything sitting in a Git repository proba‐
bly relates to the files around it and follows the same development
workflows. As a result, a CNAS platform should help secure every‐
thing in the repo—the entire cloud native app.

DAST and IAST are slightly awkward participants in such a plat‐
form. Although they deal with securing the app, they typically
require different workflows; it’s hard to fit them into a build pipeline
or IDE scans due to the time they take to run. In my opinion, this is
a technical problem, not a logical one, which will hopefully be
solved once IAST and DAST solutions evolve to become more pipe‐
line friendly.

Governance and Empowerment Approach
Embracing a dev-first security approach requires a different type of
collaboration. Instead of having tools that focus on broadcasting and
enforcing the top-down mandate, we need tools that help us build
secure applications collaboratively.

This may sound obvious, but in practice it’s a big departure from the
way many security tools work. Let’s dig into a few concrete examples
to get a taste of what this means.

First, developers need to be empowered to balance business needs
with security risk. This means, for example, allowing them to decide
not to fix a discovered vulnerability and continue deploying it to
production. This is a scary proposition to some, but it’s the only way
to enable independent teams. Note that ignoring a vulnerability

42 | Chapter 4: Adapting to Dev-First CNAS

should still require a provided (and auditable) reason, and certain
constraints should be hard lines (typically for compliance reasons),
but as a default stance, the decision should be left to the developer.

Second, developers need to be able to manage their security risk,
and that requires seeing all the vulnerabilities in their projects. This
needs to include not only the list of vulnerabilities, but also all the
information needed to prioritize well, such as exploitability and
asset mapping. Being transparent with such information may intro‐
duce some risk, but it’s the only way to scale security; to empower
developers, you have to trust them with this sensitive data.

Third, security teams should invest in tracking and driving adoption
of security controls, even more than their outputs. Dev teams
should manage their vulnerability backlogs, but the security team
needs to help them do so successfully. Dev-first security governance
means tracking which controls are adopted and how well their out‐
put is handled—and working with dev teams to improve those stats
as opposed to highlighting the vulnerabilities they should fix.

These are just a few examples of what to consider when assessing
your governance tools and techniques. The key is to embrace a plat‐
form mentality; its goal is to help dev teams succeed in building
secure software, not to track the security flaws themselves.

Rethinking Priorities
Last but not least, CNAS requires rethinking application security
priorities. If developers need to secure the entire cloud native appli‐
cation, where do you want them to focus the most?

Historically, IT security controls dominated far bigger budgets and
commanded more CISO attention than application security ones
did. There may be historical reasons for this imbalance, but at the
end of the day, it represents a CISO’s view on how best to use their
dollars to reduce the risk to the organization.

In other words, CISOs believe the risk of a breach due to an
unpatched server or misconfigured infrastructure is greater than
that of a custom vulnerability in your code. This perception has a
fair bit of data to support it, showing historical breaches and their
causes. In addition, it’s easy to understand; it’s far easier for an
attacker to run known exploits at scale and look for an open door

Rethinking Priorities | 43

than to reverse engineer an application and find custom flaws to let
them through.

The cloud doesn’t diminish this equation; in fact, it strengthens it.
Adoption of cloud means more infrastructure and more servers are
used, they tend to be more publicly accessible, and they are defined
by teams that are less familiar with managing them (developers) and
equipped with less-mature tools.

However, whereas the previous balance was between IT security
budgets and AppSec budgets, now it’s all in the AppSec world. When
building cloud native applications, the same developers need to
secure their custom code, manage vulnerabilities in their open
source usage, and make the servers and infrastructure resilient. The
same AppSec team needs to help them do so as well as split the same
budget across them.

So we’re back to the opening question: how do you want your pre‐
cious developer time and limited CNAS budget distributed?

Left to their own devices, application security budgets and developer
attention focus on securing custom code. AppSec maturity models,
industry best practices, and the personal experience of individuals
on the team are all anchored in the pre-cloud world, where custom
code was the majority of what developers had to secure. Buying
tools like SAST and DAST is often the first thing on a new AppSec
leader’s list and is rarely challenged.

However, given the CNAS scope, is that still the best use of your
time and money? The risk of a breach due to a known vulnerability
or a misconfiguration is still higher than that of a custom code flaw,
even if developers are the ones configuring it. If you agree, shouldn’t
you tell your developers and AppSec team to focus first and fore‐
most on securing those layers, and only then approach their custom
code?

This isn’t an easy question to answer. I won’t assume to know what
your priorities should be, because those change from org to org.
However, I strongly encourage you to have this conversation inter‐
nally and reconsider your priorities, given the broader scope of
CNAS.

44 | Chapter 4: Adapting to Dev-First CNAS

Conclusion
Changing how you approach application security isn’t just a thought
exercise. It has very real downstream implications, including peo‐
ple’s careers, budget allocations, and a reassessment of the best way
to keep the organization secure. It requires shaking off some muscle
memory of how you’ve done things in the past and instead going
back to first principles when choosing solutions, which takes pre‐
cious time and energy.

The good news is that you don’t have to do it all at once. The
changes I outlined in this chapter are related to one another but can
be applied at your own pace. I suggest you pick the ones you relate
to the most, or opt for other changes you think are more important,
and get the changes going. Step by step, you’ll adapt your security
function to the cloud native reality.

Conclusion | 45

Summary

Digital transformation is a force to be reckoned with. Across every
vertical, businesses strive to become technology companies and
increasingly differentiate on how well they live up to that
description.

The cloud and DevOps play a massive role in this transformation
and overhaul how we develop and operate software. Software has
never been easier to create, has never been updated as frequently as
it is today, and has never innovated to adapt to customer needs so
quickly.

These changes are all made possible by unlocking the power of inde‐
pendent teams to run fast. Agile drove these teams to be customer
centric, iterate on ideas rapidly, and own the quality of their code.
DevOps lets developers operate what they build, combining code
and infrastructure to better deliver on customer needs. And security,
as an industry, has been left behind.

In the face of such change, security has no choice but to adapt. Busi‐
nesses must and will continue to strive for speed, and independent
teams are the only way to achieve this. The way we secure applica‐
tions has to transform, making it part of the daily work of these
independent development teams. Security teams need to focus, first
and foremost, on helping these teams embrace security. Security
needs to become dev-first.

As we shift the security industry to the dev-first approach, we need
to catch up to another change that passed us by. The cloud, and with
it cloud native application development, has moved infrastructure
into the hands of developers. Under the same mantle of unlocking
speed, dev teams create, manage, and monitor their application

Summary | 47

infrastructure, removing obstacles to shipping value. We need to
make sure they secure these new responsibility domains well, and
expand application security to encompass a broader CNAS scope.

I hope this book helped you understand the value of embracing a
dev-first CNAS approach and equipped you with some techniques
for how to make it happen. As we work hard to match security
transformation with digital transformation, it’s worth remembering
there’s another reward if we get it right.

DevOps has demonstrated that businesses that employ it well are
rewarded with significant business success. Companies that
unlocked the ability of teams to run fast proved themselves to be
resilient and available and are beating their competition. And ops
teams have gone from being a cost center to a valued business
competency.

Security has the opportunity similarly to help the organization
thrive. By helping dev teams build secure software without slowing
down, you can not only reduce risk but also grow the top line. You
can help your business respond to customer needs faster while dif‐
ferentiating on being more secure and trustworthy. This could simi‐
larly turn security from a cost center to a true business partner,
driving the company’s success—which is an even bigger security
transformation.

48 | Summary

About the Author
Guy Podjarny is the founder and president of Snyk, building
developer-first security solutions. Guy was previously CTO at Aka‐
mai following its acquisition of his previous start-up, Blaze, and
managed the first application security testing solution, AppScan.

Guy is a frequent public speaker, writer, and author. He wrote
O’Reilly’s Serverless Security, Securing Open Source Libraries, High
Performance Images, and Responsive and Fast.

https://go.snyk.io/oreilly-serverless-security.html
https://go.snyk.io/OReilly-Securing-Open-Source-Libraries.html
https://learning.oreilly.com/library/view/high-performance-images/9781491925799
https://learning.oreilly.com/library/view/high-performance-images/9781491925799
https://learning.oreilly.com/library/view/responsive-fast/9781491912935

	Copyright
	Table of Contents
	Preface
	Why I Wrote This Book
	Who Is This Book For?

	Chapter 1. Digital Transformation
	Becoming a Technology Company
	Accelerating Technology Delivery
	The Cloud
	DevOps
	Cloud Native

	Security and Cloud Native Development
	Conclusion

	Chapter 2. Dev-First Security
	What Is Dev-First Security?
	Developer Context and Expertise
	Developer Experience and Affinity
	Security Audits, Developers Fix

	Shift Left Is Not Enough
	DevSecOps Versus Dev-First Security
	Conclusion

	Chapter 3. Securing the Entire Cloud Native App
	From IT Security to Cloud Security
	From Cloud Security to Cloud Native Application Security
	Container Application Security
	Runtime Security for Containers Versus Cloud VMs
	Securing Container Images Versus Cloud VMs
	Container Security Ownership
	Securing Containers as Apps

	IaC Application Security
	Securing Infrastructure as Applications
	Helping Developers Secure Infrastructure

	Conclusion

	Chapter 4. Adapting to Dev-First CNAS
	Rethinking the Security Org Structure
	Core Application Security Team
	Security Engineering/Platform Team
	Product Security/Cloud Native AppSec Team
	What About the DevSecOps Team?

	Rethinking Tooling
	Developer Tooling Caliber
	Platform Scope
	Governance and Empowerment Approach

	Rethinking Priorities
	Conclusion

	Summary
	About the Author

