
Static application security testing (SAST) plays a major
role in securing the software development lifecycle (SDLC).
Unlike dynamic application security testing (DAST), where
you need the system running to interact with it, SAST
works at the source code level prior to compiling. SAST
can address issues at the earliest stages of development.
Let’s take a look at some best practices when implementing
a developer-first SAST solution.

1. Use static code analysis

Static code analysis (SCA) finds issues early on in the
SDLC, discovers problems you have no test cases for
during dynamic testing, and improves readability and
layout. Still, these tools are often slow, results are hard
to understand, and riddled with false alarms. These
drawbacks may be why recent surveys suggest that there
is still a third of developers not using static analysis at all

2. Select robust SCA tools that fit your need

There is a variety of SCAs out there. When you research the
specifics of a tool, here are some dimensions to look at:

• Focus: Some tools focus on security, others on
 performance or style.

• Complexity: Relatively simple tools like linters and higher
 complexity tools like semantic scanners each find
 different types of issues.

• Developer friendliness: Some tools can be easily
 incorporated into a developer workflow via IDE plugins,
 while other tools can take longer to provide results or
 require manual result import into developer tooling.

• Accuracy: SCAs can harm more than they help when
 the suggestions are riddled with false positives.

• Runtime: Some tools run in real time, some take
 hours to run over significant amounts of source code.

• Languages and frameworks covered: Different SCAs
 work with different languages and libraries. Typically,
 libraries that make use of language features without any
 transpiler will benefit from static code analysis without
 specifically being supported. Run your libraries through
 your tools and check for yourself, or choose SCAs that
 cover as many languages and libraries as possible.

• Actively developed and supported: Finally, while
 the types of issues do not change frequently (take the
 OWASP Top Ten as an example), it makes sense to check
 for actively developed tools. And having support available
 is always preferred.

 The mix of tools should reflect the needs of your project
 at hand. Remember, SCAs are not all the same.

3. Embed SCA across the SDLC
There are several positions in the developer workflow,
where static program analysis can be included:

• IDE: Most support plugins for linters and Snyk Code
 provide plugins for JetBrain’s IntelliJ and Microsoft’s
 Visual Studio Code (coming soon to Snyk Code). This
 provides direct feedback right where and when you
 work on your code. Make sure these tools run in
 useful performance margin (not blocking the
 developer’s machine, but still providing
 actionable feedback).

• Compiler messages: Make sure to review the compiler
 messages, preferably in the IDE directly

• Before pull request: Some IDEs (such as IntelliJ)
 provide a list of built-in static program checking tools
 that might not be suitable for a constant run during
 standard developer work as they take a bit longer to
 finish. But running them before a pull request or during
 a code review is advisable.

• During pull requests/code review: After a pull request
 is made, all the tool goodness from before should be
 rerun to inform the reviewer. Now’s the right time to run
 tools that can take a bit longer. If you do so, make sure
 the reviewer knows what to expect. Some tools take
 extensive time to analyze pull requests. As a reviewer,
 you need to be aware to wait for the result.

• Daily builds: Again, rerun your tests. Remember that a
 daily build needs to complete within 6 to 8 hours
 (a.k.a. the night shift).

• Before deployment: Run a full test suite combining
 static and dynamic tests.

Learn About Snyk Code

Cheat Sheet: 12 best practices for developer-first static
application security testing (SAST)

https://snyk.io/product/snyk-code/
https://owasp.org/www-project-top-ten/
https://snyk.io/product/snyk-code/

8. Prioritize and fix findings

When starting SAST with a legacy project, the number of
findings and false positives can be overwhelming. There are
two ways of doing it:

• Prioritize and handle technical debt on a steady,
 workable stream.

• Handle it all at once. Make it the focus for a sprint and
 make it fun (bug hunting trophies for the team; pizza and
 party to celebrate victory).

This leaves the question of how to prioritize. Normally,
your tools provide prioritization categorization which can
be rough (severe to low impact) or based on a calculated
index. Our suggestion is to use this as an input and build
your own final prioritization index. Your index can include
things like customer demand, team capabilities, waiting
times, product strategy, and lots more that are important
for you.

9. Don’t overload your developers

Fixing thousands of suggestions at once is a project in
itself. Especially when introducing SAST on legacy code
can lead to error fatigue and in the end, nothing is achieved.

10. Shift left, but not too much
Test-driven development (TDD) means that a developer
grows the final code over various stages of obviously
insufficient implementations. Static code analysis can
actually hinder that phase when overstating the obvious.
So, shift left on your quality but not too much.

11. Tools need to be actionable
It is one thing to point out a possible fault, but it is only the
start of the remediation process. Developers need to
understand the reasoning, background information, and
ideas on how to remedy it. A brief error message with a file
name means lots of work. It’s better if the tool shows an
argumentation to follow using the real code, pointing to
external resources, and even examples from open source
projects on how to fix the issue.

12. Build KPIs around fixes applied, not the
number of open bugs
A good KPI for SAST is not to count the number of
possible issues. It drives the behavior to collect a larger
and larger number of open bugs, which overwhelms
developers and actually leads to the opposite you want to
achieve. Think about a KPI that actually counts the number
of applied fixes and their severity.

Snyk Code offers built-in best practices
Snyk thought a lot about the list above and Snyk Code is
our platform addition to address the list. Snyk Code
provides static application security testing which is
extremely fast. It fits into the developer workflow and can
be used directly in your IDE. Snyk Code provides accurate
suggestions based on a unique AI-based algorithm. The
suggestions are actionable, easy to understand, and
well-explained. Snyk Code is also easy to integrate into
your CICD process by using the Snyk CLI.
Just book a demo without any obligation and ask us any
questions you have.

4. Test your SAST

From time to time, test your SAST and see that findings
actually lead to a reaction within the CI/CD pipeline. It is
common to find tools that are ineffective do to how long
they take to run. So even though they run correctly, their
findings are never used because the CI/CD pipeline has
already moved on.

5. Keep your scanning engines up to date

Optimally use online services (SaaS) as those are maintained
by the vendors. If you need to use in-house solutions, have a
precise regiment for updates.

6. Synergize your analysis tools

Combine tools so that they can add value to each other (refer
to “do” #2). Use the most generic and general tools early in
the process, since These tools normally run faster and have
an actionable output. Most of the time, it makes sense to use
the more specific tools later in the process as those tools tend
to be resource-hungry and have a longer runtime. In general,
the sieve should be finer later in the process.

7. Scan first, manually test later

SCA is cheap in comparison to manual tests as it runs
automatically, needs minimal to no additional work, and does
not even need a running application. You should try to saturate
the number of quality improvements available by static code
analysis before starting manual tests.

Cheat Sheet: 12 best practices for developer-first static
application security testing (SAST)

Learn About Snyk Code

https://snyk.io/product/snyk-code/

