
Python security  
insights

September 2021

tl;dr

Introduction

The security footprint of a typical Python project

The most common security issues in Python projects

Dealing with vulnerabilities in Python containers

Vulnerability spotlight: ipaddress

The most commonly downloaded Python packages

The most common vulnerable packages in Python projects	

Package spotlight: urllib3

Fixing vulnerabilities

Keep your code secure

Tackling known vulnerabilities

Picking the right container image

Conclusion	

3

4

5

7

9

10

11

13

14

15

16

17

18

19

Table of contents

*

*

tl;dr

PyPI stat

 316,360 package
 2,739,363 version release
 4,595,611 package file
 8.3TB total size of packages on PyPI

Python project

 An average project has 35 dependencies with
an almost 50/50 split between direct and
indirect dependencie

 An average vulnerable project consists of 33
known vulnerabilities

Security takeaways

Bad new

 47% of Python projects contain known
vulnerabilitie

 33% of all known Python vulnerabilities are high
and critical severity issue

 In over 60% of Python projects, code related
elements of OWASP Top 10 2021 list of issues
can be found (e.g. Command Injection, XSS).

Good new

 You can eliminate 87% of known vulnerabilities by
upgrading the vulnerable packag

 Most container vulnerabilities can be fixed using
slimmer image

 The most popular Python packages are healthy,
receiving an average Snyk Advisor health score of
81%

Python container

 Over 1500 different Python image tags were
pulled down from Docker in the last month alone

 python:latest (AKA python:3.9), has 431 pre-
installed packages with 353 vulnerabilities

 Most vulnerabilities can quickly be “fixed” by
using slimmer images

 python:slim (Debian-based) has only 94
packages and 78 vulnerabilitie

 python:alpine has just 37 packages and 0
vulnerabilities

Data taken from the Snyk Intel Vulnerability Database,
hundreds of thousands of Python projects monitored
by Snyk, the same number of projects used as a
training set for Snyk Code, and Snyk Advisor.

Python known vulnerabilitie

 On average, 60 new Python vulnerabilities are added
to Snyk’s vulnerability database on a monthly basi

 5% of Python vulnerabilities are critical severity
issues, 27% are high severity, 56% are medium
severity and 12% are low severit

 87% of vulnerabilities in Python packages have
available remediation

Typical types of Python issues:

(1) XSS 
(2) TLS Certificate verification disabled 
(3) Path traversal 
(4) Hard coded secret (non crypto) 
(5) SQL Injection

9% of XSS, Path Traversal, and SQL Injections were interfile.
Especially, Django and Flask XSS and Path Traversal fall into this
category.

With a huge and ever-growing ecosystem of libraries, frameworks, and tools used by a

community of over 10 million developers worldwide, the stage is set for Python to overtake

contenders to become the most popular programming language.

Being a high-level, versatile, object-oriented language, Python is easy to learn while also being

useful and powerful. This makes it an ideal choice by programmers of all backgrounds for a

variety of projects: data analysis, web development, internet of things development (IoT),

machine learning, DevOps, scripting, and plenty of other computing uses.

Python application development has changed over the years. Today, a typical Python repository

will consist of much more than just the Python code written by the developer, but will also pull in

more open source packages. It will likely include container images as well as configuration files

used for provisioning the infrastructure required to run them. A lot of what used to be the

responsibility of IT is now code built and managed by developers. From a security perspective,

this means one thing - the attack surface is much wider than before.

Scanning a Python project will shed light on all the different nuts and bolts of your application

- the vulnerabilities they introduce and (in the best case) the remediation path. But it’s likely

you will still have questions. How do your Python projects compare to others? How are other

Python developers using open source packages? Are there any security trends in the Python

ecosystem as a whole? This report aims to cover these questions, and includes the following:

 The security footprint of a typical Python projec

 The most common vulnerabilities seen in Python application

 The most commonly used Python packages as well as the common vulnerable packages

Introduction

Snyk performs millions of monthly scans of hundreds of thousands of Python projects. We

now have the ability to describe what an average Python project looks like and can give you

an idea of what you might find when you scan one of your Python projects.

Known vulnerabilities

Python projects monitored by Snyk contain 1.3M distinct direct dependencies and 1.4M

distinct transitive dependencies. An average Python project has around 35 dependencies.

Out of these, 17 are direct dependencies and 18 are indirect dependencies.

In 47% of these projects, dependencies are introducing vulnerabilities. An average

vulnerable project consists of 33 known vulnerabilities, out of which 10% are critical

severity vulnerabilities, 26% are high severity, 26% medium severity, and 38% low severity

Container issues

Running Python applications in containers is a popular option as it eases the management

of Python versions and dependencies. Docker provides official Python images going back

as far as Python 2.7. There are also images available in popular Python data science

packages like pandas, NumPy, and Jupyter.

The security footprint of a typical Python project

Vulnerabilities
in projects by
severity

Low

30%

High

26%

Critical

10%

Medium

30%

Indirect

dependancies

51% 49%

Direct

dependancies

Average
makeup of a
dependency
tree

Snyk’s customers scan 10s of thousands of new containers

each month and Python is the 3rd most popular language-

based container in use, which aligns with the overall

popularity of Python. Images built directly from Docker’s

official Python image family are the most popular: 93% of

the readily identifiable images we scan are built on Docker’s

Official images. Unfortunately, while the use of slimmer

images is a well-known best practice, and Docker provides

many slim options, relatively heavy images like python:3.7

are still the most common Python base images detected by

Snyk. Python:3.7 has over 400 packages in it, resulting in

over 300 vulnerabilities detected. Multistage builds are a

great way to allow for the bigger images in development,

while ensuring the final production image is as light and

secure as possible.

Security weaknesses

Snyk Code support for Python is relatively new but Snyk is

already performing static code analysis for thousands of

Python projects. Roughly speaking, 20% of the security

weaknesses identified by Snyk Code are related to Python

projects. Out of these, 25% are high severity issues, 60% are

medium severity issues and 15% are low severity issues.

Overall, issues show up in over 60% of the Python projects

scanned by Snyk Code.

Based on the use of Docker's official images, as detected by Snyk Container.

Python is the fourth most popular language-based container and Python 3.7 is

the most popular version amongst Snyk's users.

Relative popularity

of language-specific
container images

Python versions in
use based on Snyk
Container scans

node java golang python ruby aspnet php

The most common security issues in Python projects

Top 5 Python Issues Reported by Snyk Code

12%

14%

23%
23%

28%

Let’s start our deeper dive into the state of security for Python projects with a

look at the most common security issues found in Python projects.

The findings you see here are based on the training set used for Snyk Code -

Snyk’s Static Application Security Testing (SAST) solution, which numbered

over 120k public Python projects on GitHub. A comparison to a recent study

comparing vulnerabilities types (CWE) found in PyPI, confirms the pattern.

Unsurprisingly, you can see OWASP’s Top 10 reflected in the results. There are

two issues specific to Python, though

 Unicode issues: Like most programming languages older than 10 years,

Python has a history of issues related to handling encoding in strings.

 Closing API calls: When interacting with external resources such as file or

network streams, calling the close function signals the system to flush the

content as well as to free any handles. Developers in other languages -

such as C++ or Java - are a bit more disciplined in managing these

resources.  

Pro Tip: Snyk’s Python cheatsheet provides a list  

of typical issue types with concrete advice.

SQL Injection

Hardcoded secret

Path Traversal

TLS Cert Disabled

XSS

https://snyk.io/blog/python-security-best-practices-cheat-sheet/

Within the training set for Snyk Code of 131,910 Python Open Source packages, we see the following distribution of issue types:

Type: Rel. within all
issues

Explanation CWE

XSS (Cross Site Scripting) 

TLS Certificate Verification
Disabled

Path Traversal
 

Hard Coded Secret
(non-crypto)

SQL Injection
 

Handled Unicode
 

Missing closing  
call to API
 

Binary Write
 

Wait can Deadlock
 

Command Injection

20% 

16%   

16%
 

10%   

9%
 

7%
 

7% 
 

7%
 

4%
 

3%

CWE-79 

CWE-295 

CWE-23 

CWE-798 
CWE-259  

CWE-89 

CWE-176  

CWE-400 

CWE-116   

CWE-1322
 

CWE-78

Attacker injects client-side scripts into website. 

Certificate verification is disabled by disabling verification calling certain functions.
Possible man-in-the-middle attacks.

User supplied file names or paths are used and attackers could traverse the
filesystem.

Hard coded values like account names, passwords, paths or file names should be
kept a secret.

User supplied string is used to construct SQL queries and could be used for SQL
injection attacks

Calling functions that need encoded parameters or provides encoded results without
proper formatting it

Access to external or buffered resource without proper closing may lead to data loss
(e.g. when storing a resource as global) 

When opening a file to write, not using binary mode may result in issues if you are
using Python 3 (or on Windows).

When working with child processes, wait can lead to deadlocks on long running
processes.

Unsanitized external data is used to build a command line call. Attackers might inject
commands to be executed.

Running Python apps in containers is quite common, because it’s an elegant way of dealing with

Python’s dependencies and virtual environments. In fact, the open source project that would go on to

become Docker was first announced and demonstrated on stage by Solomon Hykes at PyCon 2013.

While it’s pretty easy to get a Python app running in a container, as with so much in life the “easy way”

isn’t always the best way. Containers come with pre-installed Linux packages, which may or may not be

important to making your app run but will impact your vulnerability reports.

Let’s take a quick look at some Python base image options to see how they vary in size and

vulnerabilities:

All of these images are very popular, ranking in the top tags pulled from Docker's

Official Images for Python. But “fat” images like :3.9,:3.8, and :3.7 are the

most common, despite all the best practices stating you should use a slimmer

base image to reduce attack surface. You can get both worlds in containers

through the use of multi-stage builds, starting with the bigger images to simplify

building and testing your code and then moving the required production

packages to a slim image in the final stage.

The key takeaway here is that smaller usually is better, when it comes to security.

But diligence is still required. In addition, as fixes for vulnerabilities are published

by the Linux maintainers, Docker updates their images. For this reason, even if

your code doesn't change, it is worthwhile to have a process that rebuilds, tests,

and redeploys your container images.

For comparison purposes, we included Google's distroless image as well.

Distroless images remove the Linux shell, package manager, and other

components resulting in a very small image. But Docker's python:3.9-alpine

image, while slightly larger, actually has fewer vulnerabilities.

Dealing with vulnerabilities in Python containers

In March this year, security researchers Sick Codes, Victor Viale, Kelly Kaoudis, John

Jackson, and Nick Sahler uncovered a critical IP validation vulnerability in the netmask

package. The vulnerability existed in both npm and Perl versions of netmask but was also

identified later as impacting the ipaddress stdlib package in Python.

ipaddress enables developers to easily create IP addresses, networks, and interfaces,

and to parse/normalize IP addresses inputted in different formats.

The uncovered vulnerability in ipaddress is related to the way the package parses IP

addresses, improperly validating octal strings, and rendering IPv4 addresses that contain

certain octal strings as integers. This opens up those Python applications using

ipaddress to Server-Side Request Forgery (SSRF), Remote File Inclusion (RFI), and Local

File Inclusion (LFI) attacks.

The vulnerability affects Python version 3.8.0 through 3.10. As reported in Snyk Advisor,

ipaddress continues to be downloaded millions of times a week.

It’s worth noting that the

vulnerability was actually first

introduced in 2019, two full years

before it was discovered. During

this time, attackers could have

exploited this vulnerability as a

0-day without this becoming

public knowledge!

2019-03-30 - vulnerability introduced

2021-03-29 – vulnerability discovered

2021-03-29 – CVE requested

2021-04-30 – CVE Assigned CVE-2021-29921

2021-05-01 – PoC exploit published

2021-05-02 – commit 60ce8f0 (branch 3.10)

2021-05-02 – commit 5374fbc (branch 3.9)

 2021-05-03 – Python 3.9.5 released

2021-05-06 – CVE added to NVD

Vulnerability spotlight: ipaddress

Timeline

Package data

 Name: ipaddres

 Last release: Oct 18, 201

 Popularity: 1.4M weekly download

 Security: severity vulnerabilities affecting all

versions - 1 high severity, 2 medium severit

 Community: 6 contributor

 Direct inclusion rate*: 19%

* Calculated based on the number of projects which include this package as a direct dependency.

Vulnerability data

 CVE: CVE-2021-2992

 Severity level: Hig

 CVSS score: 7.

 Disclosure date: April 30, 202

 Fix version: no fixed version availab

7
6

7
 d

a
y

s

The most commonly downloaded Python packages

What open source packages are Python developers using? How healthy are these projects? Are

these packages secure? How are they included in projects?

To answer these questions we looked at two key datasets - the 1000 most downloaded

packages from PyPI and the 1000 most common packages used in the Python projects

monitored by Snyk.

Python packages in general are healthy!

To examine PyPI package downloads, we used Snyk Advisor - a free, online, research tool that

helps you decide which open source packages or container base images to use to build your

Python project. Containing all projects from PyPI, Snyk Advisor calculates a health score based

on packages’ popularity, security, maintenance, and community strength. For the 1000 most

downloaded Python packages from PyPI, Snyk Advisor suggests an average high health score

of 81%!

Usage patterns: Direct vs. Indirect

Taking a closer look at the 1000 most common packages used in projects monitored by

Snyk, we found some interesting findings related to usage patterns.

The average direct inclusion rate for these packages is 63% implying that Python

packages are mostly included in projects as a direct dependency.

Drilling a bit deeper into inclusion rates, popular utility packages, such as boto3 (91%)

or markupsafe (96%), are more likely to be pulled into a project as a direct dependency.

Other popular packages, such as urllib3 (31%), six (32%) and certifi (29%) have a

much lower direct inclusion rate and are mostly introduced as an indirect dependency.

Package

urllib3

boto3

six

botocore

requests

certifi

setuptools

idna

chardet

python-dateutil

Health score

98.50%

95.50%

86.93%

97.00%

97.00%

85.70%

95.64%

83.60%

88.43%

94.14%

of downloads*

158,893,228

134,136,171

128,572,888

128,304,032

116,360,262

113,424,297

113,270,733

112,275,170

107,130,519

100,233,788

* Average monthly downloads for the period of March 21-June 21.

** At the time of writing.

Last release date**

Jun 25, 2021

Jul 28, 2021

May 5, 2021

Jul 27, 2021

Jul 13, 2021

May 30, 2021

Jul 19, 2021

May 29, 2021

Dec 10, 2020

Jul 14, 2021

Age

12 years

7 years

11 years

9 years

10 years

10 years

15 years

8 years

15 years

13 years

Contributors

250

110

60

130

410

30

380

20

40

110

License

MIT

Apache-2.0

MIT

Apache-2.0

Apache-2.0

MPL-2.0

MIT

BSD-3-Clause

LGPL-2.1

Apache-2.0 OR

BSD-2-Clause

Dependencies

0

6

0

4

7

0

0

0

0

1

The most common vulnerable packages in Python projects

We’ve taken a look at the packages that are downloaded

more frequently. Of course, not all packages are vulnerable.

Let’s now look at the top ten vulnerable Python packages

that are currently impacting Snyk’s users the most, because

they most frequently appear in Snyk project scans.

Included in the table are the minimum version upgrades you

need to make to move to a vulnerability-free version.

As seen in the data, some particularly popular packages are

vulnerable. urllib3 stands out here (we take a closer look

at this package in the next section) but so do others.

pillow - the popular (8.3M weekly downloads) imaging

library - is riddled with vulnerabilities. While the latest

version is safe to use, previous and widely-used versions

include 1 critical severity vulnerability and 16 high severity

vulnerabilities.

The same goes for Django - a popular web framework for

Python. Versions 3.1.13 and above are safe to use but older

versions are not as secure.

ipaddress and cryptography - downloaded together

over 12.7M times a week, currently have no remediation

path.

Package

urllib3

pillow

PyYAML

ipaddress

cryptography

django

jinja2

pygments

requests

rsa

Vulnerabilities

Critical - 0 High - 3 Medium - 6 Low - 1

Critical - 1 High - 18 Medium - 7 Low -

Critical - 4

Critical - 0 High - 1 Medium - 2 Low - 0

Critical - 0 High - 4 Medium - 3 Low - 0

Critical - 0 High - 8 Medium - 15 Low - 5

Critical - 0 High - 1 Medium - 4 Low - 5

Critical -1 High - 2 Medium - 0 Low - 0

Critical -1 High - 0 Medium - 5 Low - 0

Critical -0 High - 2 Medium - 3 Low - 0

Use

HTTP client

Imaging library

YAML parser and emitter

IPv4/IPv6 manipulation library

Cryptographic recipes and primitives

High-level Python Web framework

A fast and expressive template engine

A syntax highlighting package

HTTP client

RSA implementation

Minimum known 

vuln free version

1.26.6 (latest)

8.3.1 (latest)

5.4

-

-

3.1.13

2.11.3

2.7.4

2.20.0

4.7

Weekly downloads

38M

8.3M

21M

1.5M

11.2M

1.6M

17M

6M

37M

16M

Data as of Aug/2021

Package spotlight: urllib3

urllib3 is an extremely popular HTTP client for Python, supporting a lot of greatly-needed

functionality missing in Python libraries such as thread safety, connection pooling, client-side

SSL/TLS verification, file uploads with multipart encoding, and plenty more.

With millions of downloads a week, urllib3 is the most downloaded Python package on PyPI.

It is also the 3rd most used package in the projects monitored by Snyk. From a health

perspective, urllib receives top scores with an impressive 100/100 Snyk Advisor health score

 Popularity - urllib3 is downloaded over 42 million times a week, marking it as a key
project in the Python ecosyste

 Maintenance - with 146 open issues, 13 open PRs, a recent release under a month ago and
a commit from just a few days ago, urllib3 shows strong vitality

 Security - the latest version of urllib3, version 1.26.6, is free of known security
vulnerabilities and safe to us

 Community - with 250 developers collaborating on the project, urllib is clearly receiving
strong external contributions

The devil, as always, is in the details. When looking at usage patterns for urllib3, two

worrying data points immediately stand out:

Older vulnerable versions - while the latest version of the package is safe to use, previous

versions include security vulnerabilities, including high and medium severity issues. Version

1.24.3, downloaded over 2 million times a week, includes a high severity CRLF injection

vulnerability. Version 1.26.3, downloaded over 1.5 million times a week contains an Improper

Certificate Validation vulnerability.

Indirect inclusion - in the projects monitored by Snyk, urllib3 is pulled in as a direct

dependency in only 31% of the cases. This means that vulnerabilities in older versions of the

package are more difficult to identify and fix.

#1

 Most downloaded
package on PyPI 100%

 Snyk Advisor Health

Score 2nd

 Most used package in
projects monitored by Snyk

Fixing vulnerabilities

Choose your dependencies
wisely

Adding dependencies using PyPI (or other Python package managers for

that matter) is extremely easy. But PyPI does not scan packages before

listing them nor does it guarantee the authenticity of a package. Before

you add a dependency into your project, some due diligence is a good best

practice. Using Snyk Advisor for example, you will be able to check for

known vulnerabilities or license issues as well as gauge how strong the

community behind the package is.

snyk.io/advisor/
 

Pro tip: Snyk Advisor provides you with the command line to install  

the package. By copy and pasting it, you prevent typosquatting.

Keep your code secure

A modern application consists of only 10-20% proprietary

code - the rest of the code base is actually made up of

open source code brought in by open source

dependencies. But it is this 10-20% that makes the

application unique. Containing the intellectual property of

the organization, this portion of code is not maintained by a

community of open source developers -- it is all yours to

take care of!

Python provides some build-in mechanisms that can help

you develop stable apps - support for virtual environments

is one example.

Reviewing the top 10 security issues found in application

code listed above, leads to six general points of advice:

 Use modern static code analysis: Linters like Pylint and scanners like Bandit are a good start. But nasty problems

are interfile (aka the issue happens as the application execution flows between various source files). Finding these

kinds of issues manually is near impossible

 Sanitization of data: Try to sanitize inflowing data from any external sources (including databases) at the entry

point in the application.

 ORM: Use modern Object Relational Mapping (ORM) tools to abstract the database interactions and prevent SQL

injection opportunities. If you are using packages like Django or Flask, use libraries like Django ORM or

SQLAlchemy which are well-vetted

 Unicode: If possible, standardize all strings to a certain unicode encoding - we recommend UTF-8. Be careful when

converting unicode strings into ASCII

 Close APIs: Make sure to close your network connections (e.g. external read and writes). This ensures that data

written in their buffers are actually stored, the state is stored correctly and it frees up handles in your system.

 Guard your secrets: This is not Python specific but we see secrets like usernames, passwords, API access tokens,

but also file paths or file names leak into the source code. It is a good practice to keep them in separate files, or

better yet, secret stores like HashiCorp Vault, AWS Key Management Service, etc.

For more information on best practices for keeping your

Python code secure, check out Snyk’s Python cheatsheet

https://snyk.io/blog/python-security-best-practices-cheat-sheet/

Tackling known vulnerabilities

Once a vulnerability is found, project maintainers will typically include a fix (if possible) in

a future version, so keeping your dependencies up to date is generally a good way to stay

on top of known security vulnerabilities. In some cases, though, upgrading a dependency

is challenging because of the way dependencies interact with each other and your code.

Fixing vulnerabilities in direct dependencies is usually straightforward. Upgrade the

dependency to the minimum version that includes the fix. Fixing vulnerabilities in indirect

dependencies requires two things: a fixed version of the indirect dependency and a

version of the direct dependency that utilizes that fixed version.

If these two conditions are met, upgrading the associated direct dependency to a version

that utilizes the fixed version of the indirect dependency will fix the issue. If no fix is

available at the level of the direct dependency, you can upgrade the indirect dependency

to resolve the issue. Note, however, that this has the potential to break your code due to

compatibility issues between the dependencies.

Pro tip: The Snyk CLI can be used to scan your Python dependencies locally or as part

of a CI/CD pipeline. A new fix command (currently in beta) will also fix the vulnerability

by updating your requirement.txt file.

Picking the right container image

At first glance, one might see a container vulnerability report and think that dealing with 375

vulnerabilities is an overwhelming task or that containers are far too risky. Or one might wonder

why Docker doesn’t fix these vulnerabilities themselves. Fundamentally, this thinking usually

stems from the belief that every vulnerability needs a patch and diligent sysadmins work to stay

on top of these 375 issues.
 

Instead, the theory behind containers is that they should only contain what your app needs to run,

and nothing else. That means “fixing” is not strictly limited to installing a patch; rather, removing

unneeded packages is also a fix. Which brings us back to the best practice of using slimmer

images. But there are literally thousands of image tags within the Docker Official Image Python

repository alone -if you're using python:latest, how do you know which alternatives might be

better, short of testing them one-by-one?

To pick a good container base image

 Use Snyk Advisor to look up good starting points. Tags with the word "slim" and Alpine

images will be the smallest, reducing the likelihood of vulnerabilities

 Use Snyk Container for scanning your Dockerfile from your git repo to get immediate

recommendations and fix PRs even before you build and scan any images

 Rebuild, scan and redeploy often, even if there are no code changes, to get the latest

updates from Docker and the latest versions of your tools. Snyk Container will monitor

for new vulnerabilities, out-of-date images, and incorporate the running configuration to

prioritize issues to fix

 Multistage builds not only help produce small, secure images for production, but are a

great way to provide a single source of image instructions for every stage of

development and release.

Conclusion

As applications get more complex, so does the task of securing them. Malicious actors have a wide

variety of attack vectors to use when attacking a Python app - whether via known vulnerabilities

introduced via direct and indirect dependencies, security issues in the app’s proprietary code, or

container vulnerabilities. Just under half of all Python projects monitored by Snyk are indeed

vulnerable.

But not all is bad. In fact, the data here suggests the Python ecosystem is well equipped to

successfully tackle security. An impressive 87% of known vulnerabilities have a fix. Not only are the

most commonly used packages generally healthy, but 63% of these packages are also included via

a direct dependency and so applying a fix is relatively simple. Using the python:slim image will

quickly remove hundreds of container vulnerabilities.

At Snyk, our goal is to help development and security teams develop fast while staying secure. A

big part of that is providing developer-first tools that help these teams find, prioritize and fix issues

quickly and efficiently. Snyk Advisor helps developers research packages on PyPi. And we facilitate

the reporting of new vulnerabilities. Currently the Python ecosystem does not have a centralized

place to report vulnerabilities in open source libraries. Snyk is a CVE Numbering Authority (CNA),

which means we are able to assign a new vulnerability a CVE number and add the vulnerability to

relevant databases. As a CNA, Snyk can help you responsibly report vulnerabilities.

Secure your Python projects
with Snyk

Scan your Python code for quality and security issues,

and get fix advice right in your IDE. Get started with

Snyk for free.

Get started for free

https://snyk.io/lp/python-snyk-code-checker/

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

