
Python Security Best Practices
Cheat Sheet - 2021 Edition

A vector of attack for any application is external data, which can be used for injection, XSS,
or denial of service (DOS) attacks. So the general rule needs to be to sanitize data as soon as
possible and to use secure functions throughout the application.

Starting with sanitization, it always makes more sense to check for what the input should be
than to try to handle the exceptions. It’s also recommended to use well maintained libraries
for sanitization. Here are two:
• schema is “a library for validating Python data structures, such as those obtained from

config-files, forms, external services or command-line parsing, converted from JSON/
YAML (or something else) to Python data-types.

• beach is “an allowed-list-based HTML sanitizing library that escapes or strips markup and
attributes.”

The major frameworks come with their own sanitation functions like Flask’s

 flask.escape() or Django’s django.utils.html.escape(). The goal of any of
these functions is to secure possibly malicious HTML input such as this:

>>> import bleach

>>> bleach.clean(‘an XSS <script>navigate(...)</script> example’)

‘an XSS <script>navigate(...)</script> example’

The limitation of this approach is that these libraries are not good for everything. They are
specialized in their domain. As a note, be sure to read to the end of this post to get more
information about other data formats, such as XML.

Another often used option is to leave the rendering of HTML to templating engines such as
Jinja. It provides lots of capabilities, and amongst them is auto-escaping to prevent XSS
using MarkupSafe.

1. Always sanitize external data

Python Security Best Practices Cheat Sheet

In 2019, Snyk released its first Python cheat sheet. Since then, many aspects of Python have
changed, so we’ve had to make updates. Here is the 2021 version.

https://snyk.io/learn/cross-site-scripting/
https://www.advancedcyber.co.uk/it-security-blog/phishing-technique-certainly-vulnerable-to
https://pypi.org/project/schema/
https://pypi.org/project/bleach/
https://jinja.palletsprojects.com/en/3.0.x/
https://jinja.palletsprojects.com/en/3.0.x/intro/
https://markupsafe.palletsprojects.com/en/2.0.x/
https://res.cloudinary.com/snyk/image/upload/v1551385381/Python_Security_Best_Practices_Cheat_Sheet__.pdf

Another aspect of sanitization is preventing data from being used as a command. A typical
example is an SQL injection. Instead of stitching strings and variables together to generate
an SQL query, it is advisable to use named-parameters to tell the database what to treat as a
command and what as data.

Instead of this …

cursor.execute(f”SELECT admin FROM users WHERE username =

‘{username}’”);

...do this...

cursor.execute(“SELECT admin FROM users WHERE username = %(username)

s”, {‘username’: username});

Or even better, use Object-Relational Mapping (ORM), such as sqlalchemy, which would make

the example query look like this:

query = session.query(User).filter(User.name.like(‘%{username}’))

Here you also declare clearly what you want to treat as command and what as data or
parameter plus you give the ORM layer the opportunity to apply optimizations like caching.
So you benefit beyond being more secure.

If you want to learn more, check out our cheat sheet on SQL injection.

Scan your code
Python developers have a wide array of static code analysis tools at their disposal. Let’s take
a look at three different levels of tools.

Python Security Best Practices Cheat Sheet

https://snyk.io/learn/sql-injection/
https://www.sqlalchemy.org/
https://snyk.io/blog/sql-injection-cheat-sheet/

First, the linter level. PEP8 has been serving for decades now as a style guide for Python.
Various tools are available (and built into IDEs) to check against this style guide, like pep8,
pylint, flake8, and more.

Next, tools like bandit transform code into an abstract syntax tree and perform queries on
it to find typical security issues. This is a level above what typical linters do which work
on a syntactical level. Still, bandit is limited by its intermediate representation and its
performance. For example, bandit cannot detect data flow related issues (known as taint-
analysis) and these result in the most devastating flaws (injections like SQL injection or XSS
as an example).

Finally, Static Application Security Testing (SAST) tools like Snyk Code run a semantic
analysis taking even complex interfile issues into account. Unlike other tools on this level,
Snyk Code is developer-friendly by scanning fast and integrating into the IDE. Snyk Code
explains its highly accurate findings and provides help including examples how to fix it. And
to top that, it’s easy to get started with and free to use on open source (plus a limited amount
of non-OSS tests).

Be careful when downloading
packages
It is easy to install Python packages. Typically developers use the standard package installer
for Python (pip) which uses the PyPI marketplace. This makes it important to understand
how packages are added to PyPI.

PyPI has a procedure for reporting security concerns. If someone reports a malicious
package or a problem within PyPI it is addressed, but packages added to PyPI do not
undergo review — this would be an unrealistic expectation of the volunteers who maintain
PyPI.

Python Security Best Practices Cheat Sheet

https://www.python.org/dev/peps/pep-0008/
https://pypi.org/project/pep8/
https://www.pylint.org/
https://flake8.pycqa.org/en/latest/#
https://pypi.org/project/bandit/
https://snyk.io/learn/security-vulnerability-exploits-threats/
https://www.google.com/url?q=https://snyk.io/learn/sast-static-application-security-testing/&sa=D&source=editors&ust=1626386204309000&usg=AOvVaw3KfqzzF_3QGJpl2chrK6qN
https://snyk.io/product/snyk-code/
https://snyk.io/ide-plugins/

Doing a quick search for a package on Snyk Advisor gives you a lot of information on the
package, its support in the community, its history of bugs and fixes, and a lot more. A best
practice before downloading a reference is to type the name in an editor and copy-paste
using that spelling to prevent typosquatting. Snyk Advisor can tell you whether or not you
should trust a package. You can see the history of security issues and the time it took to
 get them fixed.

Therefore, it is wise to assume that there are malicious packages within PyPI and you should
act accordingly. Reasonable steps include doing a bit of research on the package you want
to install and ensuring that you carefully spell out the package name (a package named
for a common misspelling of a popular package could execute malicious code). Before
downloading a package, make sure to check it on Snyk Advisor.

Python Security Best Practices Cheat Sheet

https://snyk.io/blog/typosquatting-attacks/
https://www.theregister.com/2021/03/02/python_pypi_purges/
https://www.theregister.com/2021/03/02/python_pypi_purges/
https://snyk.io/advisor/

Another best practice is to use virtual environments to isolate projects from each other. Also,
use pip freeze or a comparable command to record changes in the environment in the
requirement list.

Maintaining references in an up to date manner, Snyk Open Source is based on an industry
leading vulnerability database recording security issues and possible fixes. Snyk Open
Source runs scans using the requirements and provides actionable information about
discovered vulnerabilities of direct and transitive references and helps you to fix them right
away.

Review your dependency licenses
When considering using an open source project, it is important to understand how these
projects are licensed. Open source projects are free and available to use, but there may still
be terms and conditions applied. These terms usually involve how the software is used,
whether you need to make any changes you make to the software publicly available, and
other similar requirements. You should become familiar with the licenses necessary for the
projects you use, so you are sure that you are not compromising yourself legally.

If the project adopts a more restrictive license than you anticipated (GPL, SSPL, etc.), you can
end up cornering yourself, leaving you to either comply with the terms of the license or cease
using the project. Additionally, if you need to make changes to the project that does not have
a license, you might run afoul with copyright law.

To ensure that your project is sustainable and you do not expose yourself to unnecessary
Python security and legal risks, scan and fix license and vulnerability issues in your project’s
dependencies.

Snyk Open Source can help you here with open source license compliance management.
It provides a developer-friendly way to gain end-to-end visibility while providing a flexible
governance.

Python Security Best Practices Cheat Sheet

https://snyk.io/product/open-source-security-management/
https://snyk.io/product/vulnerability-database/
https://snyk.io/learn/what-is-copyleft-license/
https://snyk.io/learn/what-is-gpl-license-gplv3-explained/
https://snyk.io/product/open-source-security-management/
https://www.google.com/url?q=https://snyk.io/product/open-source-license-compliance/&sa=D&source=editors&ust=1626388184557000&usg=AOvVaw3Z5IoaXXkFKw3qLfydbJ3_

Do not use the system standard
version of Python
Most POSIX systems come preloaded with a version of Python. The problem with this version
is that it is not kept current in a way as the specialized deployment package. Sometimes this
is even a Python 2 version.

So make sure to use the latest version of Python available for your system and official
containers designed to run Python and keep it updated. Snyk is here to help you. Scan your
containers for necessary updates using Snyk Container and check your dependencies using
Snyk Open Source.

Use Python’s capability for virtual
environments
Use Python’s capability for virtual environments Python is equipped to separate application
development into virtual environments. A virtual environment isolates the Python interpreter,
libraries, and scripts installed into it. It is a directory tree which contains executables and
other files that make up the virtual environment. Common installation tools such as pip work
as expected in a virtual environment. A virtual environment is activated by running a script.
Most IDEs or dashboards, such as Anaconda Navigator, have built in functions to switch
between virtual environments.

Pro Tip: As of Python version 3.5 on the use of venv is recommended and with version 3.6
pyvenv was deprecated.

Virtual environments make developing, packaging, and shipping Python applications easier.
Using them is highly recommended not only for security reasons. See the Python venv doc
for more details.

Python Security Best Practices Cheat Sheet

https://hub.docker.com/_/python
https://hub.docker.com/_/python
https://snyk.io/product/container-vulnerability-management/
https://snyk.io/product/open-source-security-management/
https://www.anaconda.com/products/individual
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Set DEBUG = False in production
In a development environment, it makes sense to have verbose error messages. In
production though, you want to prevent any leaks of information that might help an
attacker to learn more about your environment, libraries, or code.

Per default, most frameworks have debugging switched on. For example, Django has
it enabled in settings.py. Make sure to switch debugging to False in production.

Pro Tip: Having a test case in the integration tests to see if the production configuration
is activated.

Be careful with string formatting
Despite Python’s idea of having one and only one way to do things, it actually has four
different ways to format strings (three methods for versions prior to Python 3.6).

String formatting has gotten progressively more flexible and powerful (f-strings are
particularly interesting), but as flexibility increases, so does the potential for exploits.
For this reason, Python users should carefully consider how they format strings with data
entered by users.

Python has a built-in module named string. This module includes the Template class,
which is used to create template strings.

Consider the following example.

from string import Template

greeting_template = Template(“Hello World, my name is $name.”)

greeting = greeting_template.substitute(name=”Hayley”)

Python Security Best Practices Cheat Sheet

For the above code, the variable greeting is evaluated as: “Hello World, my name is Hayley.”

This string format is a bit cumbersome because it requires an import statement and it is less
flexible with types. It also doesn’t evaluate Python statements the way f-strings do. These
constraints make template strings an excellent choice when dealing with user input.

Another quick note on string formatting: Be extra careful with raw SQL as mentioned above.

Deserialize very cautiously
Python provides a built-in mechanism to serialize and deserialize Python objects called
“pickling” using the pickle module. This is known to be insecure and it is advisable to use it
very cautiously and only on trusted sources.

The new de-facto standard for serialization / deserialization is YAML using PyYAML. The
package provides a mechanism to serialize custom data types to YAML and back into Python
projects. But PyYAML is riddled with various possible attack vectors. A simple but effective
way to secure the usage of PyYAML is using yaml.SafeLoader() instead of
yaml.Loader() as a loader.

Data = yaml.load(input_file, Loader=yaml.SafeLoader)

This prevents loading of custom classes but supports standard types like hashes and arrays.

Another typical use case is XML. Typically standard libraries are used and they are vulnerable
to typical attacks — namely DOS attacks or external entity expansion (an external source is
references). A good first line of defense is a package called defusedxml. It has safeguards
against these typical attacks.

Python Security Best Practices Cheat Sheet

https://docs.python.org/3/library/pickle.html
https://pypi.org/project/pyaml/
https://snyk.io/vuln/pip:PyYAML
https://docs.python.org/3/library/xml.html#xml-vulnerabilities
https://snyk.io/advisor/python/defusedxml

Bonus, non-security tip: Use Python
type annotations
With version 3.5, type hints were introduced. While the Python runtime does not enforce type
annotations, tools such as type checkers, IDEs, linters, SASTs, and others can benefit from
the developer being more explicit. Here is an example to highlight the idea:

MODE = Literal[‘r’, ‘rb’, ‘w’, ‘wb’]

def open_helper(file: str, mode: MODE) -> str:

 ...

open_helper(‘/some/path’, ‘r’) # Passes type check

open_helper(‘/other/path’, ‘typo’) # Error in type checker

Literal[...] was introduced with version 3.8 and is not enforced by the runtime (you can pass
whatever string you want in our example) but type checkers can now discover that the
parameter is outside the allowed set and warn you.

Note: As it is not enforced by the runtime, the security usage of type hints are limited.

Secure your Python code with Snyk
Scan your Python code for quality and security issues, and get fix advice right in your IDE.
Get started with Snyk for free.

 Get started for free

Python Security Best Practices Cheat Sheet

https://docs.python.org/3/library/typing.html
https://snyk.io/lp/python-snyk-code-checker/
https://snyk.io/lp/python-snyk-code-checker/

